第 9 节 圆锥曲线的综合问题考试要求 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.知 识 梳 理1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为 y=kx+b,然后利用条件建立 b,k 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.3.求解范围问题的方法求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围,要特别注意变量的取值范围.4.圆锥曲线中常见最值的解题方法(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.5.圆锥曲线的弦长设斜率为 k(k≠0)的直线 l 与圆锥曲线 C 相交于 A,B 两点,A(x1,y1),B(x2,y2),则|AB|=|x1-x2|=·=·|y1-y2|=·.[常用结论与微点提醒]1.直线与椭圆位置关系的有关结论(1)过椭圆外一点总有两条直线与椭圆相切;(2)过椭圆上一点有且仅有一条直线与椭圆相切;(3)过椭圆内一点的直线均与椭圆相交.2.直线与抛物线位置关系的有关结论(1)过抛物线外一点总有三条直线和抛物线有且只有一个公共点,即两条切线和一条与对称轴平行或重合的直线;(2)过抛物线上一点总有两条直线与抛物线有且只有一个公共点,即一条切线和一条与对称轴平行或重合的直线;(3)过抛物线内一点只有一条直线与抛物线有且只有一个公共点,即一条与对称轴平行或重合的直线.诊 断 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)直线 l 与椭圆 C 相切的充要条件是:直线 l 与椭圆 C 只有一个公共点.( )(2)直线 l 与双曲线 C 相切的充要条件是:直线 l 与双曲线 C 只有一个公共点.( )(3)直线 l 与抛物线 C 相切的充要条件是:直线 l 与抛物线 C 只有一个公共点.( )(4)如果直线 x=ty+a 与圆锥曲线相交于 A(x1,y1),B(x2,y2)两点,则弦长|AB|=|y1-y2|.( )解析 (2)因为直线 l 与双曲线 C 的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线 l 与抛物线 C 的...