4.2代数式教学目标:知识目标:1、在具体情境中让学生观察、分析归纳得出代数式的概念。理解代数式的意义。2、能根据代数式和具体问题说出一个代数式表示的数量关系。能力目标:进一步让学生理解字母表示数的意义,并能解释代数式的实际背景或几何意义,发展符号感。情感目标:使学生初步认识数学与人类的密切关系,体验数学活动充满着探索与创造。教学重点:理解代数式的意义,会正确书写代数式。教学难点:用代数式表示数量关系。教学预设:一、从学生原有的认知结构提出问题1.在小学我们曾学过几种运算律?都是什么?如何用字母表示它们?(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)(1)加法交换律a+b=b+a;(2)乘法交换律a·b=b·a;(3)加法结合律(a+b)+c=a+(b+c);(4)乘法结合律(ab)c=a(bc);(5)乘法分配律a(b+c)=ab+ac.指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数.2.(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?3.若用s表示路程,t表示时间,v表示速度,你能用s与t表示v吗?4.一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?(用l厘米表示周长,则l=4a厘米;用S平方厘米表示面积,则S=a2平方厘米).此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与方程中,用字母表示数也会给运算带来方便;那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.二、讲授新课1.代数式单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数式的意义.2.举例说明例1填空:(1)每包书有12册,n包书有____________册;(2)温度由t℃下降到2℃后是______℃;(3)棱长是a厘米的正方体的体积是______立方厘米;(4)产量由m千克增长10%,就达到______千克.解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m.例2说出下列代数式的意义:(1)2a+3(2)2(a+3)(3)a2+b2(4)(a+b)2解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;(3)a2+b2的意义是a,b的平方的和;(4)(a+b)2的意义是a与b的和的平方.说明:(1)本题应由教师示范来完成;(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点.如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”.例3用代数式表示:(1)m与n的和除以10的商;(2)m与5n的差的平方;(3)x的2倍与y的和;(4)v的立方与t的3倍的积.分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面.三、课堂练习1.填空:(1)n箱苹果重p千克,每箱重______千克;(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为______厘米;(3)底为a,高为h的三角形面积是______;(4)全校学生总人数是x,其中女生占48%,则女生人数是______,男生人数是______.2.用代数式表示:(1)x与y的和;(2)x的平方与y的立方的差;(3)a的60%与b的2倍的和;(4)a除以2的商与b除3的商的和.四、师生共同小结1.本节课学习了哪些内容?2.用字母表示数的意义是什么?3.什么叫代数式?教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号.五.布置作业