3.2独立性检验的基本思想及其初步应用(二)高二数学选修2-3第三章统计案例不患肺癌患肺癌总计不吸烟aba+b吸烟cdc+d总计a+cb+da+b+c+d把表中的数字用字母代替,得到如下用字母表示的列联表H0:吸烟与患肺癌没有关系.用A表示不吸烟,B表示不患肺癌,则“吸烟与患肺癌没有关系”等价于“吸烟与患肺癌独立”,即假设H0等价于P(AB)=P(A)P(B).2×2列联表不患肺癌患肺癌总计不吸烟aba+b吸烟cdc+d总计a+cb+da+b+c+da+bP(A),na+cP(B),n.aP(AB)n在表中,a恰好为事件AB发生的频数;a+b和a+c恰好分别为事件A和B发生的频数。由于频率接近于概率,所以在H0成立的条件下应该有因此|ad-bc|越小,说明吸烟与患肺癌之间关系越弱;|ad-bc|越大,说明吸烟与患肺癌之间关系越强。adbc即(a+b+c+d)a(a+b)(a+c),aa+ba+c≈×nnn其中为样本容量,即n=a+b+c+d随机变量-----卡方统计量22(),()()()()其中为样本容量。nadbcKabcdacbdnabcd1、独立性检验0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.8280k0)k2P(K临界值表828.102K635.62K706.22K22.706K0.1%把握认为A与B无关1%把握认为A与B无关99.9%把握认A与B有关99%把握认为A与B有关90%把握认为A与B有关10%把握认为A与B无关没有充分的依据显示A与B有关,但也不能显示A与B无关第一步:H0:吸烟和患病之间没有关系患病不患病总计吸烟aba+b不吸烟cdc+d总计a+cb+da+b+c+d第二步:列出2×2列联表2、独立性检验的步骤第三步:计算第四步:查对临界值表,作出判断。))()()(()(22dcbadbcabcadnKP(≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828反证法原理与假设检验原理反证法原理在一个已知假设下,如果推出一个矛盾,就证明了这个假设不成立。假设检验原理在一个已知假设下,如果一个与该假设矛盾的小概率事件发生,就推断这个假设不成立。例1在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶。分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?解:根据题目所给数据得到如下列联表:患心脏病不患心脏病总计秃顶214175389不秃顶4515971048总计6657721437患心脏病患其他病1755972144510100200300400500600患心脏病患其他病秃头不秃头相应的三维柱形图如图所示,比较来说,底面副对角线上两个柱体高度的乘积要大一些,因此可以在某种程度上认为“秃顶与患心脏病有关”。例1在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶。分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?解:根据题目所给数据得到如下列联表:患心脏病不患心脏病总计秃顶214175389不秃顶4515971048总计6657721437根据联表1-13中的数据,得到221437(214597175451)16.3736.635.3891048665772K所以有99%的把握认为“秃顶与患心脏病有关”。例1.秃头与患心脏病①在解决实际问题时,可以直接计算K2的观测值k进行独立检验,而不必写出K2的推导过程。②本例中的边框中的注解,主要是使得学生们注意统计结果的适用范围(这由样本的代表性所决定)。因为这组数据来自住院的病人,因此所得到的结论适合住院的病人群体.例2为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下联表:喜欢数学课程不喜欢数学课程总计男3785122女35143178总计72228300由表中数据计算K2的观测值k4.514。能够以95%的把握认为高中生的性别与是否喜欢数学课程之间有关系吗?请详细阐述得出结论的依据。解:可以有95%以上的把握认为“性别与喜欢数学课程之间有关系”。例3.在500人身上试验某种血清预防感冒作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示。未感冒感冒合计使用血清252248500未使用血清22427...