第十六章二次根式课题16.1二次根式(1)教学目标1.经历二次根式概念的发生过程2.了解二次根式的概念3.理解二次根式何时有意义,何时无意义,会在简单情况下求根号内所有含字母的取值范围4.会求二次根式的值教学设想教学重点:二次根式的概念教学难点:例1的第(2)(3)题学生不容易理解。教学程序与策略一、知识回顾:1、什么叫做平方根?一般地,如果一个数的平方等于a,那么这个数叫做a的平方根。2、什么叫算术平方根?正数的正平方根和零的平方根,统称算术平根。用表示讨论并解释:为什么a≥0?二、新课教学做一做:课本P4的填空你认为所得的各代数式的共同特点是什么?象这样表示的算术平方根,且根号中含有字母的代数式叫做二次根式为了方便起见,我们把一个数的算术平方根也叫做二次根式。解:(1)由a+1≥0得,a≥-1∴字母a的取值范围是大于或等于-1的实数(2)由>0,得1-2a>0。即a<,∴字母a的取值范围是小于的实数(3)因为无论a取何值,都有(a-3)2≥0,所以a的取值范围是全体实数说明:求字母的取值范围实质是:转化为解不等式(组)练习:求下列二次根式中字母a的取值范围:11;a12;12a23(3).a1例1:求下列二次根式中字母a的取值范围:例2:当x=-4时,求二次根式的值解:将x=-4代入二次根式得==3说明:与求代数式的值类比。提高:2、物体自由下落时,下落距离h(米)可用公式h=5t2来估计,其中t(秒)表示物体下落所经过的时间.(1)把这个公式变形成用h表示t的公式(2)一个物体从54.5米高的塔顶自由下落,落到地面需几秒(精确到0.1秒)?3、当分别取下列值时,求二次根式的值:;;.检测:求二次根式中的取值范围:(1)(2)(3)(4)附加题:(5)(6)(7)三、课堂小结:由学生总结,教师适当提问补充。本节课要掌握:1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.四、作业:教后反思第十六章二次根式课题16.1二次根式(2)教学目标1.理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计21、若二次根式的值为3,求x的值.2x算和化简.2.通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.教学设想1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出()2=a(a≥0).教学程序与策略一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出(a≥0)是一个非负数.做一做:根据算术平方根的意义填空:()2=_______;()2=_______;()2=______;()2=_______;()2=______;()2=_______;()2=_______.老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以()2=a(a≥0)例1计算1.()22.(3)23.()24.()2分析:我们可以直接利用()2=a(a≥0)的结论解题.3解:()2=,(3)2=32·()2=32·5=45,()2=,()2=.三、巩固练习计算下列各式的值:()2()2()2()2(4)2四、应用拓展例2计算1.()2(x≥0)2.()23.()24.()2分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.例3在实数范围内分解下列因式:(1)x2-3(2)x4-4(3)2x2-3五、归纳小结本节课应掌握:1.(a≥0)是一个非负数;2.()2=a(a≥0);反之:a=()2(a≥0).六、布置作业教后反思第十六章二次根式课题16.1二次根式(3)4教学目标1、理解=a(a≥0)并利用它进行计算和化简.2、通过具体数据的解答,探究=a(a≥0),并利用这个结论解决具体问题...