专题限时集训(十一)直线与圆(对应学生用书第139页)[建议A、B组各用时:45分钟][A组高考达标]一、选择题1.已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=()A.2B.4C.6D.2C[圆C的标准方程为(x-2)2+(y-1)2=4,圆心为C(2,1),半径为r=2,因此2+a×1-1=0,所以a=-1,从而A(-4,-1),|AB|===6.]2.已知圆x2+y2+mx-=0与抛物线y=x2的准线相切,则m=()【导学号:68334121】A.±2B.±C.D.B[抛物线的准线为y=-1,将圆化为标准方程得2+y2=,圆心到准线的距离为1=⇒m=±.]3.若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上运动,则AB的中点M到原点的距离最小值为()A.B.2C.3D.4C[由题意知AB的中点M的集合为到直线l1:x+y-7=0和l2:x+y-5=0的距离相等的直线,则点M到原点的距离的最小值为原点到该直线的距离.设点M所在的直线方程为:x+y+m=0,根据平行线间的距离公式得,=,解得m=-6,即l:x+y-6=0,再根据点到直线的距离公式得点M到原点的距离的最小值为=3.]4.已知圆心在原点,半径为R的圆与△ABC的边有公共点,其中A(4,0),B(6,8),C(2,4),则R的取值范围是()【导学号:68334122】A.B.[4,10]C.[2,10]D.A[由图形(图略)可得当圆与AC边相切时,R取得最小值,直线AC的方程为2x+y-8=0,则由点到直线的距离公式可得Rmin=.当圆经过点B时,R取得最大值,则Rmax=10,所以R的取值范围是,故选A.]5.两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R,b∈R且ab≠0,则+的最小值为()A.1B.3C.D.A[x2+y2+2ax+a2-4=0,即(x+a)2+y2=4,x2+y2-4by-1+4b2=0,即x2+(y-2b)2=1,依题意可得,两圆外切,则两圆心距离等于两圆的半径之和,则=1+2=3,即a2+4b2=9,所以+==≥=1,1当且仅当=即a=±b时取等号,故选A.]二、填空题6.已知⊙O:x2+y2=1,若直线y=kx+2上总存在点P,使得过点P的⊙O的两条切线互相垂直,则实数k的取值范围是________.(-∞,-1]∪[1,+∞)[因为圆心为O(0,0),半径R=1.设两个切点分别为A,B,则由题意可得四边形PAOB为正方形,故有PO=R=,由题意知圆心O到直线y=kx+2的距离小于或等于PO=,即≤,即1+k2≥2,解得k≥1或k≤-1.]7.设点P在直线y=2x+1上运动,过点P作圆(x-2)2+y2=1的切线,切点为A,则切线长|PA|的最小值是________.2[圆心C(2,0)到直线2x-y+1=0的距离d=,所以|PA|=≥=2.]8.若直线l1:y=x+a和直线l2:y=x+b将圆(x-1)2+(y-2)2=8分成长度相等的四段弧,则a2+b2=________.18[由题意得直线l1:y=x+a和直线l2:y=x+b截得圆的弦所对圆周角相等,皆为直角,因此圆心到两直线距离皆为r=2,即==2⇒a2+b2=(2+1)2+(-2+1)2=18.]三、解答题9.已知圆C:x2+y2-4x-6y+12=0,点A(3,5).(1)求过点A的圆的切线方程;(2)O点是坐标原点,连接OA,OC,求△AOC的面积S.[解](1)由圆C:x2+y2-4x-6y+12=0,配方得(x-2)2+(y-3)2=1,圆心C(2,3).2分当斜率存在时,设过点A的圆的切线方程为y-5=k(x-3),即kx-y+5-3k=0.由d==1,得k=.4分又斜率不存在时直线x=3也与圆相切,5分故所求切线方程为x=3或3x-4y+11=0.6分(2)直线OA的方程为y=x,即5x-3y=0,8分点C到直线OA的距离为d==.12分又|OA|==,∴S=|OA|d=.15分10.已知点P(0,5)及圆C:x2+y2+4x-12y+24=0.(1)若直线l过点P且被圆C截得的线段长为4,求l的方程;(2)求过P点的圆C的弦的中点的轨迹方程.2[解](1)如图所示,|AB|=4,将圆C方程化为标准方程为(x+2)2+(y-6)2=16,2分所以圆C的圆心坐标为(-2,6),半径r=4,设D是线段AB的中点,则CD⊥AB,所以|AD|=2,|AC|=4,C点坐标为(-2,6).在Rt△ACD中,可得|CD|=2.若直线l的斜率存在,设为k,则直线l的方程为y-5=kx,即kx-y+5=0.由点C到直线AB的距离公式:=2,得k=.故直线l的方程为3x-4y+20=0.4分直线l的斜率不存在时,也满足题意,此时方程为x=0.6分所以所求直线l的方程为x=0或3x-4y+20=0....