章末达标测试(三)(本卷满分150分,时间120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x1234用水量y4.5432.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是y=-0.7x+a,则a等于A.10.5B.5.15C.5.2D.5.25解析x=2.5,y=3.5,因为回归直线过定点(x,y),所以3.5=-0.7×2.5+a.所以a=5.25.答案D2.某考察团对全国10个城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查,y与x具有相关关系,回归方程为y=0.66x+1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为A.83%B.72%C.67%D.66%解析由已知y=7.675,代入方程y=0.66x+1.562,得x≈9.2621,所以百分比为≈83%,故选A.答案A3.在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=x+1上,则这组样本数据的样本相关系数为A.-1B.0C.D.1解析由题设知,所有样本点(xi,yi)(i=1,2,…,n)都在直线y=x+1上,所以这组样本数据完全正相关,故其相关系数为1.答案D4.设两个变量x和y之间具有线性相关关系,它们的相关系数是r,y关于x的回归直线的斜率是b,纵轴上的截距是a,那么必有A.b与r的符号相同B.a与r的符号相同1C.b与r的符号相反D.a与r的符号相反解析因为b>0时,两变量正相关,此时r>0;b<0时,两变量负相关,此时r<0.答案A5.下表显示出样本中变量y随变量x变化的一组数据,由此判断它最可能是x45678910y14181920232528A.线性函数模型B.二次函数模型C.指数函数模型D.对数函数模型解析画出散点图(图略)可以得到这些样本点在某一条直线上或该直线附近,故最可能是线性函数模型.答案A6.下面的等高条形图可以说明的问题是A.“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响是绝对不同的B.“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响没有什么不同C.此等高条形图看不出两种手术有什么不同的地方D.“心脏搭桥”手术和“血管清障”手术对“诱发心脏病”的影响在某种程度上是不同的,但是没有100%的把握解析由等高条形图可知选项D正确.答案D7.根据一位母亲记录儿子3~9岁的身高数据,建立儿子身高(单位:cm)对年龄(单位:岁)的线性回归方程为y=7.19x+73.93,若用此方程预测儿子10岁时的身高,有关叙述正确的是A.身高一定为145.83cmB.身高大于145.83cmC.身高小于145.83cmD.身高在145.83cm左右解析用线性回归方程预测的不是精确值,而估计值.当x=10时,y=145.83,只能说身高在145.83cm左右.2答案D8.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大221032课外阅读量一般82028总计303060由以上数据,计算得到K2的观测值k≈9.643,根据临界值表,以下说法正确的是A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关解析根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.答案D9.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如表所示:杂质高杂质低旧设备37121新设备22202根据以上数据,则下列说法正确的是A.含杂质的高低与设备改造有关B.含杂质的高低与设备改造无关C.设备是否改造决定含杂质的高低D.以上答案都不对解析由已知数据得到如下2×2列联表杂质高杂质低总计旧设备37121158新设备22202224总计59323382K2的观测值k=≈13.11,由于13.11>10.828,故在犯错误的概率不超过0.001的前提下认为含杂质的高低与设3...