第三章 玻璃、断裂力学及玻璃结构第一节玻璃玻璃是一种均质的材料,一种固化的液体,分子完全任意排列。由于它是各种化学键的组合,因此没有化学公式。玻璃没有熔点,当它被加热时,会逐渐从固体状态转变为具有塑性的黏质状态,最后成为一种液体状态。与其他那些因测量方向不同而表现出不同特性的晶体相比,玻璃表现了各向同性,即它的性能不是由方向决定的。当前用于建筑的玻璃是钠钙硅酸盐玻璃。生产过程中,原材料要被加热到很高的温度,使其在冷却前变成黏性状态,再冷却成形。3.1.1 玻璃的力学性能常温下玻璃有许多优异的力学性能:高的抗压强度、好的弹性、高的硬度,莫氏硬度在 5~6 之间,用一般的金属刻化玻璃很难留下痕迹,切割玻璃要用硬度极高的金刚石。抗压强度比抗拉强度高数倍。常用玻璃与常用建筑材料的强度比较如下:玻璃钢(Q235)铸铁水泥抗压强度(Mpa)630~1260——65020~80抗拉强度(Mpa)28~70380~470100~280——3.1.2 玻璃没有屈服强度。玻璃的应力应变拉伸曲线与钢和塑料是不同的,钢和塑料的拉伸应力在没有超过比例极限以前,应力与应变呈线性直线关系,超过弹性极限并小于强度极限,应变增加很快,而应力几乎没有增加,超过屈服极限以后,应力随应变非线性增加,直至钢材断裂。玻璃是典型的脆性材料,其应力应变关系呈线性关系直至破坏,没有屈服极限,与其它建筑材料不同的是:玻璃在它的应力峰值区,不能产生屈服而重新分布,一旦强度超过则立即发生破坏。应力与变形曲线见下图。图 3-1 应力与变形拉伸曲线3.1.3 玻璃的理论断裂强度远大于实际强度。玻璃的理论断裂强度就是玻璃材料断裂强度在理论上可能达到的最高值,计算玻璃理论断裂强度应该从原子间结合力入手,因为只有克服了原子间的结合力,玻璃才有可能发生断裂。Kelly 在1973 年的讨论表明理想的玻璃理论断裂强度一般处于材料弹性模量的 1/10~1/20 之间,大约为 0.7×104 MPa,远大于实际强度,在实际材料中,只有少量的经过精心制作极细的玻璃纤维的断裂强度,能够达到或者接近这一理论的计算结果。断裂强度的理论值和建筑玻璃的实际值之间存在的悬殊的差异,是因为玻璃在制造过程中不可避开的在表面产生很多肉眼看不见的裂纹,深度约 5μm,宽度只有 0.01 到 0.02μm,每 mm2 面积有几百条,又称格里菲思裂纹,见图3-2、图 3-3。至使断裂强度的理论值远大于实际值。1913 年 Inglis提出应力集中理论,指出截面的急剧变化和裂纹...