2.8函数模型及函数的综合应用挖命题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点1.函数的模型及实际应用了解指数函数、对数函数、幂函数的增长特征,体会直线上升、指数增长、对数增长等不同函数类型增长的含义2014湖南,8实际应用问题中的函数思想★★★2.函数的综合应用问题了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用,了解函数与方程、不等式之间的联系,并能解决一些具体的实际问题2016天津文,14函数的综合应用问题函数与方程★★★2013天津文,8指数函数与对数函数2013天津,8函数的单调性分析解读为了考查学生的综合能力与素养,高考加强了函数综合应用问题的考查力度,这一问题一般涉及的知识点较多,综合性也较强,属于中档以上的试题,题型以填空题和解答题为主,在高考中分值为5分左右,通常在如下方面考查:1.对函数实际应用问题的考查,这类问题多以社会实际生活为背景,设问新颖,要求学生掌握课本中的概念、公式、法则、定理等基础知识与方法.2.以课本知识为载体,把函数与方程、不等式、数列、解析几何等知识联系起来,构造不等式求参数范围,利用分离参数法求函数值域,进而求字母的取值等.破考点【考点集训】考点一函数的模型及实际应用1.去年某地的月平均气温y(℃)与月份x(月)近似地满足函数y=a+bsinπ6x+φ(a,b,为常数0<φ<π2).其中三个月份的月平均气温如下表:x5811y133113则该地2月份的月平均气温约为℃,φ=.答案-5;π6考点二函数的综合应用问题2.动点P从点A出发,按逆时针方向沿周长为l的平面图形运动一周,A,P两点间的距离y与动点P所走过的路程x的关系如图所示,则动点P所走的图形可能是()答案D3.若函数f(x)=|x+1|+|2x+a|的最小值为3,则实数a的值为()A.5或8B.-1或5C.-1或-4D.-4或8答案D4.(2017课标Ⅰ,9,5分)已知函数f(x)=lnx+ln(2-x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称答案C5.单位圆的内接正n(n≥3)边形的面积记为f(n),则f(3)=.下面是关于f(n)的描述:①f(n)=n2sin2πn;②f(n)的最大值为π;③f(n)1.设函数f(x)=(x2-2)(x-1),x∈R.⊗若函数y=f(x)-c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(-1,1]∪(2,+∞)B.(-2,-1]∪(1,2]C.(-∞,-2)∪(1,2]D.[-2,-1]答案B4.(2016天津文,14,5分)已知函数f(x)={x2+(4a-3)x+3a,x<0,loga(x+1)+1,x≥0(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2-x3恰有两个不相等的实数解,则a的取值范围是.答案[13,23)5.(2012天津,14,5分)已知函数y=|x2-1|x-1的图象与函数y=kx的图象恰有两个交点,则实数k的取值范围是.答案(0,1)∪(1,2)B组统一命题、省(区、市)卷题组考点一函数的模型及实际应用1.(2014湖南,8,5分)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.p+q2B.(p+1)(q+1)-12C.❑√pqD.❑√(p+1)(q+1)-1答案D2.(2018浙江,11,6分)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁...