给学生一个“舞台”展示自我————《反比例函数》教学设计与评析【教学目标】1、理解反比例函数的概念,会求比例系数。2、感受反比例函数是刻画世界数量关系的一种有效模型,能够列出实际问题中的反比例函数关系。3、进一步理解常量与变量的辩证关系和反映在函数概念中的运动变化观点.【教学过程】一、活动设计情境1:①当路程一定时,速度与时间成什么关系?(s=vt)②当一个长方形面积一定时,长与宽成什么关系?(s=ab)【点评:这个情境是学生熟悉的例子,鼓励学生积极思考、讨论、合作、交流,最终让学生讨论出:当两个量的积是一个定值时,这两个量成反比例关系,如xy=m(m为一个定值),则x与y成反比例。这一情境为后面学习反比例函数概念作铺垫.】情境2:汽车从南京出发开往上海(全程约300km),全程所用时间t(h)随速度v(km/h)的变化而变化.问题:(1)你能用含有v的代数式表示t吗?(2)利用(1)的关系式完成下表:随着速度的变化,全程所用时间发生怎样的变化?(3)时间t是速度v的函数吗?为什么?【点评:①引导学生观察、讨论路程、速度、时间这三个量之间的关系,得出关系式s=vt,指导学生用这个关系式的变式来完成问题(1).②引导学生观察、讨论,并运用(1)中的关系式填表,并观察变化的趋势,引v/(km/h)608090100120t/h1导学生用语言描述.③结合函数的概念,特别强调唯一性,引导讨论问题(3).】情境3:用函数关系式表示下列问题中两个变量之间的关系:(1)一个面积为6400m2的长方形的长a(m)随宽b(m)的变化而变化;(2)某银行为资助某社会福利厂,提供了20万元的无息贷款,该厂的平均年还款额y(万元)随还款年限x(年)的变化而变化;(3)游泳池的容积为5000m3,向池内注水,注满水所需时间t(h)随注水速度v(m3/h)的变化而变化;(4)实数m与n的积为-200,m随n的变化而变化.问题:①这些函数关系式与我们以前学习的一次函数、正比例函数关系式有什么不同?②它们有一些什么特征?③你能归纳出反比例函数的概念吗?一般地,形如y=(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.反比例函数的自变量x的取值范围是不等于0的一切实数.【点评:这个情境先引导学生审题列出函数关系式,使之与我们以前所学的一次函数、正比例函数的关系式进行类比,找出不同点,通过学生交流发现特征为:(1)自变量x位于分母,且其次数是1.(2)常量k≠0.(3)自变量x的取值范围是x≠0的一切实数.(4)函数值y的取值范围是非零实数.并引导归纳出反比例函数的概念,紧抓概念中的关键词,使学生对知识认知有系统性、完整性,并在概念揭示后强调反比例函数也可表示为y=kx-1(k为常数,k≠0)的形式,并结合旧知验证其正确性.】二、例题教学例1:下列关系式中的y是x的反比例函数吗?如果是,比例系数k是多少?(1);(2);(3);(4);(5)(6);(7)2【点评:引导学生充分讨论,将反比例函数与一次函数的关系式进行比较。若对反比例函数的定义理解不深刻,常会认为(2)与(7)也是y是x的反比例函数,而(2)式等号右边的分母是2x,不是x,(2)式y与2x成反比例,它不是y与x的反比例函数。对于(7),等号右边不能化成的形式,所以(7)不是反比例函数。通过这个例题让学生进一步认识反比例函数概念的本质,提高辨别的能力.】例2:在函数y=-1,y=,y=x-1,y=中,y是x的反比例函数的有个.【点评:这个例题也是引导学生从反比例函数概念入手,着重从形式上进行比较,识别一些反比例函数的变式,如y=kx-1的形式.还有y=-1通分为y=,y、x都是变量,分子不是常量,故不是反比例函数,但变为y+1=可说成(y+1)与x成反比例.】例3:若y与x成反比例,且x=-3时,y=7,则y与x的函数关系式为【点评:这个例题引导学生观察、讨论,并回顾以前求一次函数关系式时所用的方法,初步感知用“待定系数法”来求比例系数,并引导学生归纳求反比例函数关系式的一般方法,即只需已知一组对应值即可求比例系数.】三、拓展练习1、写出下列问题中两个变量之间的函数关系式,并判断其是否为反比例函数如果是,指出比例系数k的值.(1)底边为5c...