相交线与平行线编稿老师:白真审稿老师:范兴亚责编:邵剑英一、对顶角和邻补角的概念:在相交的两条直线得到的四个角中,(1)有公共顶点,没有公共边的两个角叫做对顶角。如图中的∠1和∠2,∠3和∠4。(2)有一个公共顶点,还有一条公共边的两个角叫做邻补角。如图中的∠1与∠3,∠2和∠4。邻补角也可以看成是,一条直线与端点在这条直线的一条射线组成的两个角。如下图。指出:邻补角是两个角互补的特殊关系。练习1:辨别图形:下图中两角是对顶角吗?练习2:找图中∠1的邻补角。练习3:两直线相交,对顶角相等。●证明猜想,形成定理。已知:如图,直线AB与直线CD相交于O点。求证:∠1=∠3,∠2=∠4。证明:因为∠1+∠2=180°,(邻补角定义)∠3+∠2=180°,(邻补角定义)所以∠1=∠3。(同角的补角相等)同理:∠2=∠4。因此,我们可以得到对顶角的性质:对顶角相等。角的名称特征性质相同点不同点对顶角①两条直线相交而成的角②有一个公共顶点③没有公共边对顶角相等都是两条直线相交而成的角,都有一个公共顶点。它们都成对出现。对顶角没有公共边,而邻补角有一条公共边,两条直线相交时,一个角的对顶角有一个,一个角的邻补角有两个。邻补角①两条直线相交而成的角②有一个公共顶点③有一条公共边邻补角互补[例]如图,(1)已知直线AB,CD相交于点O,(2)已知直线AE,BD相交于点C。图中哪些角是邻补角?答:(1)邻补角是∠DOA与∠AOC,∠AOE与∠EOB,∠BOC与∠COA,∠COE与∠DOE,∠DOA与∠DOB,∠DOB与∠BOC。(2)邻补角是∠ACB与∠ACD,∠ECD与∠DCA,∠DCE与∠ECB,∠ECB与∠ACB。图中哪些角是对顶角?解:(1)中的对顶角是∠AOD与∠COB,∠AOC与∠DOB。(2)中的对顶角是∠ACB与∠DCE,∠BCE与∠ACD。二、垂直:1.垂直的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。它们的交点叫做垂足。2.垂线的性质:过一点有且只有一条直线与已知直线垂直。(1)“过一点”有几种情况?(2)“有且只有”什么意思?练习:过点P分别向角的两边作垂线。三、同位角、内错角、同旁角的概念角的名称位置特征基本图形图形结构特征同位角在两条被截直线同旁,在截线同侧去掉多余的线是现基本图形形如字母“F”或(倒“F”形)内错角在两条被截直线之内,在截线两侧(交错)去掉多余的线是现基本图形形如字母“Z”或(反置)同旁内角在两条被截直线之内,在截线同侧去掉多余的线是现基本图形形如字母“U”练习:口答。1.如图1,找出右图中所有的同位角、内错角、同旁内角。2.如图2,直线a、b被直线c所截的角中,找出同位角、内错角、同旁内角。四、直线的平行(一)重点知识讲解:1.平行线的概念:在同一平面内,不相交的两条直线叫做平行线。若两条直线a,b互相平行,记作a∥b。强调两条直线不重合。2.平行公理:经过直线外一点有且只有一条直线和这条直线平行。平行公理推论:如果两条直线都平行于同一条直线,那么这两个直线互相平行。(简单说成:平行于同一直线的两直线平行)即:如图,若a∥c,b∥c,则a∥b。已知:若a∥c,b∥c,求证:a∥b。证明:假设直线a与直线b不平行,那么直线a与b相交,设交点为M。因为a∥c,b∥c,所以点M在直线c外,这样过点M有两条直线a,b与直线c平行,与平行公理矛盾。所以,假设直线a与直线b不平行错误,因此只有a∥b。3.平行线的判定:直接根据平行线的定义来判断两条直线是否平行是非常困难的一件事。人们在实践中总结、归纳、证明出利用角的关系来判断两条直线是否平行。(1)同位角相等,两直线平行;(公理)(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行。(4)平行于同一条直线的两条直线互相平行。(5)在同一平面内,垂直于同一条直线的两条直线互相平行。已知:如图,在同一平面内,CD⊥AB于D点,EF⊥AB于F点,求证:CD∥EF。证明: CD⊥AB于D点,EF⊥AB于F点(已知),∴∠CDB=∠EFB=90°(垂线定义)。又 CD、EF在同一平面内,∴CD∥EF(同位角相等,两直线平行)。注意:(1)平行线的性质定理与平行线的判定定理是互为逆命题的...