7相似三角形的性质第1课时相似三角形对应线段的比【知识与技能】理解并掌握相似三角形对应线段(高、中线、角平分线)比与相似比之间的关系【过程与方法】对性质定理的探究:学生经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨的学习态度.【情感态度】在学习和探讨的过程中,体验从特殊到一般的认知规律.【教学重点】相似三角形性质定理的探索及应用.【教学难点】相似三角形的性质与判定的综合应用.一、情境导入,初步认识1.什么叫相似三角形?相似比指的是什么?2.全等三角形是相似三角形吗?全等三角形的相似比是多少?3.相似三角形的判定方法有哪些?4.根据相似三角形的概念可知相似三角形有哪些性质?5.相似三角形还有其它的性质吗?本节我们就来探索相似三角形的其它性质.【教学说明】回顾前面所学的知识,为本节课的学习作铺垫.二、思考探究,获取新知1.如图,△ABC和△A′B′C′是两个相似三角形,相似比为k,其中,AD、A′D′分别为BC、B′C′边上的高,那么,AD和A′D′之间有什么关系?证明:∵△ABC∽△A′B′C′,∴∠B=∠B′,又∵AD⊥BC,A′D′⊥B′C′∴∠ADB=∠A′D′B′=90°,∴△ABD∽△A′B′D′,∴AB︰A′B′=AD︰A′D′=k.2.△ABC∽△A′B′C′,AD、A′D′分别是△ABC和△A′B′C′边上的中线,AE、A′E′分别是△ABC和△A′B′C′的角平分线,且AB︰A′B′=k,那么AD与A′D′、AE与A′E′之间有怎样的关系?【归纳结论】相似三角形对应角平分线的比、对应中线的比都等于相似比.【教学说明】学生小组内交流讨论,写出过程,教师点评.三、运用新知,深化理解1.已知△ABC∽△A′B′C′,BD和B′D′是它们的对应中线,且,B′D′=4,则BD的长为6.解析:因为△ABC∽△A′B′C′,BD和B′D′是它们的对应中线,根据对应中线的比等于相似比,,即,∴BD=6.2.已知△ABC∽△A′B′C′,AD和A′D′是它们的对应角平分线,且AD=8cm,A′D′=3cm.则△ABC与△A′B′C′对应高的比为.3.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于(D)A.B.C.D.解析:由题意可知△DAO∽△DEA,∴==.所以选D.4.如图,CD是Rt△ABC的斜边AB上的高.(1)则图中有几对相似三角形;(2)若AD=9cm,CD=6cm,求BD;(3)若AB=25cm,BC=15cm,求BD.解析:(1)∵CD⊥AB,∴∠ADC=∠BDC=∠ACB=90°.在△ADC和△ACB中,∠ADC=∠ACB=90°,∠A=∠A,∴△ADC∽△ACB,同理可知,△CDB∽△ACB,△ADC∽△CDB.所以图中有三对相似三角形.(2)∵△ACD∽△CBD,∴,即,∴BD=4(cm).(3)∵△CBD∽△ABC,∴,即,∴BD==9(cm).5.如图,梯形ABCD中,AB∥CD,点F在BC上,连接DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,∴△CDF∽△BGF.(2)解:∵△CDF∽△BGF,又F是BC的中点,∴△CDF≌△BGF,∴DF=FG,CD=BG,又∵EF∥CD,AB∥CD,∴EF∥AG,得2EF=AB+BG.∴BG=2EF-AB=2×4-6=2cm,∴CD=BG=2cm.【教学说明】通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的习惯,提高分析问题和解决问题的能力.四、师生互动,课堂小结通过本节课的学习,你有哪些收获?1、布置作业:教材“习题5.11及5.12”中第1、3题.2、完成练习册中相应练习.本节课的主要内容是导出相似三角形的性质定理,并进行初步运用,让学生经历相似三角形性质探索的过程,体会相似三角形中的变量与不变量,体会其中蕴涵的数学思想.