第17练三角函数的图象与性质[题型分析·高考展望]三角函数的图象与性质是高考中对三角函数部分考查的重点和热点,主要包括三个大的方面:三角函数图象的识别,三角函数的简单性质以及三角函数图象的平移、伸缩变换.考查题型既有选择题、填空题,也有解答题,难度一般为低中档,在二轮复习中应强化该部分的训练,争取对该类试题会做且不失分.体验高考1.(2015·湖南)将函数f(x)=sin2x的图象向右平移φ个单位后得到函数g(x)的图象,若对满足|f(x1)-g(x2)|=2的x1,x2,有|x1-x2|min=,则φ等于()A.B.C.D.答案D解析因为g(x)=sin2(x-φ)=sin(2x-2φ),所以|f(x1)-g(x2)|=|sin2x1-sin(2x2-2φ)|=2.因为-1≤sin2x1≤1,-1≤sin(2x2-2φ)≤1,所以sin2x1和sin(2x2-2φ)的值中,一个为1,另一个为-1,不妨取sin2x1=1,sin(2x2-2φ)=-1,则2x1=2k1π+,k1∈Z,2x2-2φ=2k2π-,k2∈Z,2x1-2x2+2φ=2(k1-k2)π+π,(k1-k2)∈Z,得|x1-x2|=.因为0<φ<,所以0<-φ<,故当k1-k2=0时,|x1-x2|min=-φ=,则φ=,故选D.2.(2016·四川)为了得到函数y=sin的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动个单位长度B.向右平行移动个单位长度C.向左平行移动个单位长度D.向右平行移动个单位长度答案D解析由题可知,y=sin=sin,则只需把y=sin2x的图象向右平移个单位,选D.3.(2016·课标全国乙)已知函数f(x)=sin(ωx+φ),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在上单调,则ω的最大值为()A.11B.9C.7D.5答案B解析因为x=-为f(x)的零点,x=为f(x)的图象的对称轴,所以-=+kT,即=T=·,所以ω=4k+1(k∈N*),又因为f(x)≤在上单调,所以-==,即ω≤12,由此得ω的最大值为9,故选B.4.(2015·浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是________,单调递减区间是________.答案π,k∈Z解析f(x)=+sin2x+1=sin+,∴T==π.由+2kπ≤2x≤-+2kπ,k∈Z,解得+kπ≤x≤+kπ,k∈Z,∴单调递减区间是,k∈Z.5.(2016·天津)已知函数f(x)=4tanxsincos-.(1)求f(x)的定义域与最小正周期;(2)讨论f(x)在区间上的单调性.解(1)f(x)的定义域为{x|x≠+kπ,k∈Z}.f(x)=4tanxcosxcos-=4sinxcos-=4sinx-=2sinxcosx+2sin2x-=sin2x+(1-cos2x)-=sin2x-cos2x=2sin.所以f(x)的最小正周期T==π.(2)令z=2x-,则函数y=2sinz的单调递增区间是,k∈Z.由-+2kπ≤2x≤-+2kπ,k∈Z.得-+kπ≤x≤+kπ,k∈Z.设A=,B={x|-+kπ≤x≤+kπ,k∈Z},易知A∩B=.所以,当x∈时,f(x)在区间上单调递增,在区间上单调递减.高考必会题型题型一三角函数的图象例1(1)(2015·课标全国Ⅰ)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.,k∈ZB.,k∈ZC.,k∈ZD.,k∈Z(2)(2016·北京)将函数y=sin图象上的点P向左平移s(s>0)个单位长度得到点P′.若P′位于函数y=sin2x的图象上,则()A.t=,s的最小值为B.t=,s的最小值为C.t=,s的最小值为D.t=,s的最小值为答案(1)D(2)A解析(1)由图象知,周期T=2=2,∴=2,∴ω=π.由π×+φ=+2kπ,k∈Z,不妨取φ=,∴f(x)=cos.由2kπ<πx+<2kπ+π,k∈Z,得2k-0,|φ|<)的最小正周期是π,且f(0)=,则()A.ω=,φ=B.ω=,φ=C.ω=2,φ=D.ω=2,φ=(2)已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<,ω>0)的图象的一部分如图所示,则该函数的解析式为______________.答案(1)D(2)f(x)=2sin解析(1) f(x)=2sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,∴T==π,...