专题二三角函数、平面向量第1讲三角函数的图象与性质(建议用时:60分钟)一、选择题1.(·青岛模拟)将函数y=sin的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为().A.y=sinB.y=sinC.y=sinxD.y=sin解析将函数图象上所有点的横坐标伸长到原来的2倍得到y=sin的图象,然后将所得图象向左平移个单位得到y=sin=sin的图象.答案D2.(·浙江卷)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析φ=⇒f(x)=Acos=-Asinωx为奇函数,∴“f(x)是奇函数”是“φ=”的必要条件.又f(x)=Acos(ωx+φ)是奇函数⇒f(0)=0⇒φ=+kπ(k∈Z)D/⇒φ=.∴“f(x)是奇函数”不是“φ=”的充分条件.答案B3.已知函数f(x)=2sin(ωx+φ)(ω>0)的图象关于直线x=对称,且f=0,则ω的最小值为().A.2B.4C.6D.8解析由f=0知是f(x)图象的一个对称中心,又x=是一条对称轴,所以应有解得ω≥2,即ω的最小值为2,故选A.答案A4.(·四川卷)函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则ω,φ的值分别是().A.2,-B.2,-C.4,-D.4,解析T=-,T=π,∴ω=2,∴2×+φ=2kπ+,k∈Z,∴φ=2kπ-,k∈Z.又φ∈,∴φ=-,选A.答案A5.(·湖北卷)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是().A.B.C.D.解析y=cosx+sinx=2sin,向左平移m个单位长度后得到y=2sin,由它关于y轴对称可得sin(+m)=±1,∴+m=kπ+,k∈Z,∴m=kπ+,k∈Z,又m>0,∴m的最小值为.答案B6.若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=().A.B.C.2D.3解析由题意知f(x)的一条对称轴为直线x=,和它相邻的一个对称中心为原点,则f(x)的周期T=,从而ω=.答案B7.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤对x∈R恒成立,且ffC.f(x)是奇函数D.f(x)的单调递增区间是(k∈Z)解析由f(x)≤恒成立知x=是函数的对称轴,即2×+φ=+kπ,k∈Z,所以φ=+kπ,k∈Z,又f0,得φ=,即f(x)=sin,由-+2kπ≤2x+≤+2kπ,k∈Z,得-+kπ≤x≤+kπ,k∈Z,即函数的单调递增区间是(k∈Z).答案D二、填空题8.若sin=,则sin=______.解析sin=-cos=-cos=2sin2-1=-.答案-9.(·安徽卷)若将函数f(x)=sin的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是________.解析 函数f(x)=sin的图象向右平移φ个单位得到g(x)=sin=sin,又 g(x)是偶函数,∴-2φ=kπ+(k∈Z).∴φ=--(k∈Z).当k=-1时,φ取得最小正值.答案10.(·新课标全国Ⅰ卷)设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ=________.解析f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,当x-φ=2kπ+(k∈Z)时,函数f(x)取得最大值,即θ=2kπ++φ时,函数f(x)取到最大值,所以cosθ=-sinφ=-.答案-11.已知函数f(x)=3sin(ωx-)(ω>0)和g(x)=3cos(2x+φ)的图象的对称中心完全相同,若x∈,则f(x)的取值范围是______.解析由两三角函数图象的对称中心完全相同,可知两函数的周期相同,故ω=2,所以f(x)=3sin,那么当x∈时,-≤2x-≤,所以-≤sin(2x-)≤1,故f(x)∈.答案12.(·北京卷)设函数f(x)=Asin(ωx+φ)(A,ω,φ是常数,A>0,ω>0).若f(x)在区间上具有单调性,且f=f=-f,则f(x)的最小正周期为________.解析 f(x)在上具有单调性,∴≥-,∴T≥. f=f,∴f(x)的一条对称轴为x==.又 f=-f,∴f(x)的一个对称中心的横坐标为=.∴T=-=,∴T=π.答案π三、解答题13.(·西安五校二次模拟)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象的一部分如图所示.(1)求函数f(x)的解析式;(2)当x∈时,求函数y=f(...