东北育才学校高中部2016届高三第五次模拟数学试题(文科)考试时间:120分钟试卷满分:150分第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合A={1,2},B={1,m,3},如果A∩B=A,那么实数m等于()A.﹣1B.0C.2D.42.已知命题P:∀x∈R,ex﹣x﹣1>0,则¬P是()A.∀x∈R,ex﹣x﹣1<0B.∃x0∈R,﹣x0﹣1≤0C.∃x0∈R,﹣x0﹣1<0D.∀x∈R,ex﹣x﹣1≤03.已知复数z,“z+=0”是“z为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也不必要条件4.执行如图所示的程序框图,若输出的S为4,则输入的x应为()A.﹣2B.16C.﹣2或8D.﹣2或165.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm36.已知是函数的一个极大值点,则的一个单调递减区间是A.B.C.D.7.已知等比数列{an}中,各项都是正数,且3a1,,2a2成等差数列,则等于()A.6B.7C.8D.98.函数的图象与x轴的交点的横坐标构成一个公差为的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位9.已知不等式组所表示的平面区域的面积为4,则k的值为()A.1B.﹣3C.1或﹣3D.010.已知正实数m,n满足:m+n=1,且使取得最小值,若曲线过点,则的值等于A-1BC2D311.气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22(℃)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):①甲地:5个数据的中位数为24,众数为22;②乙地:5个数据的中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个12.设f′(x)是函数f(x)的导函数,且f′(x)>2f(x)(x∈R),f()=e(e为自然对数的底数),则不等式f(lnx)<x2的解集为()A.(0,)B.(0,)C.(,)D.(,)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题5分.13.若数a1,a2,a3,a4,a5的标准差为2,则数3a1﹣2,3a2﹣2,3a3﹣2,3a4﹣2,3a5﹣2的方差为.14.若非零向量,,满足+2+3=,且•=•=•,则与的夹角为.15.在平面直角坐标系中,△ABC的顶点A、B分别是离心率为e的圆锥曲线的焦点,顶点C在该曲线上.一同学已正确地推得:当m>n>0时,有e•(sinA+sinB)=sinC.类似地,当m>0、n<0时,有e•()=sinC.16.对于函数y=f(x),若存在定义域D内某个区间[a,b],使得y=f(x)在[a,b]上的值域也为[a,b],则称函数y=f(x)在定义域D上封闭,如果函数f(x)=﹣在R上封闭,则b﹣a=.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.某校为了解学生的视力情况,随机抽查了一部分学生视力,将调查结果分组,分组区间为(3.9,4.2],(4.2,4.5],…,(5.1,5.4].经过数据处理,得到如下频率分布表:分组频数频率(3.9,4.2]30.06(4.2,4.5]60.12(4.5,4.8]25x(4.8,5.1]yz(5.1,5.4]20.04合计n1.00(Ⅰ)求频率分布表中未知量n,x,y,z的值;(Ⅱ)从样本中视力在(3.9,4.2]和(5.1,5.4]的所有同学中随机抽取两人,求两人的视力差的绝对值低于0.5的概率.18.在直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是C1C上一点.(1)当CF=2,求证:B1F⊥平面ADF;(2)若FD⊥B1D,求三棱锥B1﹣ADF体积.19.设a、b、c分别是△ABC三个内角∠A、∠B、∠C的对边,若向量,且,(1)求tanA•tanB的值;(2)求的最大值.20.如图,F是椭圆+=1(a>b>0)的右焦点,O是坐标原点,|OF|=,过F作OF的垂线交椭圆于P0,Q0两点,△OP0Q0的面积为.(1)求该椭圆的标准方程;(2)若直线l与上下半椭圆分别交于点P、Q,与x轴交于点M,且|PM|=2|MQ|,求△OPQ的面积取得最大值时直线l的方程.21.设函数f(x)=clnx+x2+bx(b,c∈R,c≠0),且x=1为f(x)的极值点.(Ⅰ)若x=1为f(x)的极大...