专题6.2等差数列与等比数列试题文【三年高考】1.【2016高考新课标2文数】等差数列{}中,.(Ⅰ)求{}的通项公式;(Ⅱ)设,求数列的前10项和,其中表示不超过的最大整数,如[0.9]=0,[2.6]=2.2.【2016高考北京文数】已知是等差数列,是等差数列,且,,,.(1)求的通项公式;(2)设,求数列的前n项和.【解析】(I)等比数列的公比,所以,.设等差数列的公差为.因为,,所以,即.所以(,,,).(II)由(I)知,,.因此.从而数列的前项和.3.【2016高考山东文数】已知数列的前n项和,是等差数列,且.(I)求数列的通项公式;(II)令.求数列的前n项和.4.【2015高考新课标1,文7】已知是公差为1的等差数列,为的前项和,若,则()(A)(B)(C)(D)【答案】B【解析】 公差,,∴,解得=,∴,故选B.5.【2015高考陕西,文13】中位数为1010的一组数构成等差数列,其末项为2015,则该数列的首项为________【答案】5【解析】若这组数有个,则,,又,所以;若这组数有个,则,,又,所以;故答案为56.【2015高考福建,文17】等差数列中,,.(Ⅰ)求数列的通项公式;(Ⅱ)设,求的值.7.【2015高考天津,文18】已知是各项均为正数的等比数列,是等差数列,且,.(I)求和的通项公式;(II)设,求数列的前n项和.8.【2015高考广东,文19】设数列的前项和为,.已知,,,且当时,.(1)求的值;(2)证明:为等比数列;(3)求数列的通项公式.【解析】(1)当时,,即,解得:(2)因为(),所以(),即(),因为,所以,因为,所以数列是以为首项,公比为的等比数列(3)由(2)知:数列是以为首项,公比为的等比数列,所以即,所以数列是以为首项,公差为的等差数列,所以,即,所以数列的通项公式是9.【2014高考江西卷文第13题】在等差数列中,,公差为,前项和为,当且仅当时取最大值,则的取值范围_________.【答案】【解析】由题意得:,所以,即10.【2014高考辽宁卷文第9题】设等差数列的公差为d,若数列为递减数列,则()A.B.C.D.【答案】C11.【2014高考福建卷文第17题】在等比数列中,.(1)求;(2)设,求数列的前项和.【解析】(1)设的公比为q,依题意得,解得,因此,.(2)因为,所以数列的前n项和.12.【2014高考重庆文第16题】已知是首项为1,公差为2的等差数列,表示的前项和.(I)求及;(II)设是首项为2的等比数列,公比满足,求的通项公式及其前项和.【三年高考命题回顾】纵观前三年各地高考试题,对等差数列和等比数列的考查,主要以等差数列和等比数列为素材,围绕着等差数列、等比数列的定义、性质、通项公式和前n项和公式的运用设计试题,而等差数列和等比数列在公式和性质上有许多相似性,是高考必考内容,着重考查等差、等比数列的基本运算、基本技能和基本思想方法,题型不仅有选择题、填空题、还有解答题,题目难度中等.【2017年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出,对于等差与等比数列的综合考查也频频出现.考查的目的在于测试考生灵活运用知识的能力,这个“灵活”就集中在“转化”的水平上.在解答题中,有的考查等差数列、等比数列通项公式和求和知识,属于中档题,有的与函数、不等式、解析几何等知识结合考查,难度较大.等差数列和等比数列的判定,可能会在解答题中的第一问,或者渗透在解题过程中.等差数列、等比数列的通项公式,以小题形式或者在解答题中考查,是解决等差数列和等比数列的瓶颈,要熟练掌握.等差数列和等比数列性质的运用,主要以选择或者填空的形式考查,难度较低.对等差数列、等比数列前n项和的考查,直接考查或者通过转化为等差数列、等比数列后的考查.在2017年对数列的复习,除了加强“三基”训练,同时要紧密注意与函数、不等式、解析几何结合的解答题.故预测2017年高考可能以等差数列与等比数列的基本性质为主要考查点,重点考查学生基本运算能力以及转化与化归能力,试题难度中等.【2017年高考考点定位】高考对等差数列和等比数列的考查有四种主要形式:一是考察等差数列和等比数列的判定,主要以定义为主;二是考察通项公式,直接求或者转化为等差数列和等比数列后再求...