专题4.2三角恒等变换试题文【三年高考】1.【2016高考天津文数】已知函数,.若在区间内没有零点,则的取值范围是()(A)(B)(C)(D)【答案】D2.[2016高考新课标Ⅲ文数]若,则()(A)(B)(C)(D)【答案】D【解析】.3.【2016高考浙江文数】已知,则______,______.【答案】;1.【解析】,所以4.【2016高考新课标1文数】已知θ是第四象限角,且sin(θ+)=,则tan(θ–)=.【答案】5.【2016高考山东文数】设.(I)求得单调递增区间;(II)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数的图象,求的值.【解析】()由由得所以,的单调递增区间是(或)()由()知把的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到的图象,再把得到的图象向左平移个单位,得到的图象,即所以6.【2015高考福建,文6】若,且为第四象限角,则的值等于()A.B.C.D.【答案】D7.【2015高考重庆,文6】若,则()(A)(B)(C)(D)【答案】A【解析】,故选A.8.【2015高考上海,文17】已知点的坐标为,将绕坐标原点逆时针旋转至,则点的纵坐标为().A.B.C.D.【答案】D【解析】设直线的倾斜角为,,则直线的倾斜角为,因为,所以,,,即,因为,所以,所以或(舍去),所以点的纵坐标为.9.【2015高考广东,文16】已知.(1)求的值;(2)求的值.10.【2014高考全国2卷文第14题】函数的最大值为________.【答案】1【解析】由已知得,,故函数的最大值为1.11.【2014高考陕西卷文第13题】设,向量,若,则______.【答案】12.【2014高考江西文第16题】已知函数为奇函数,且,其中.(1)求的值;(2)若,求的值.【三年高考命题回顾】纵观前三年各地高考试题,三角函数的化简、求值及最值问题,是每年高考必考的知识点之一,题型一般是选择和填空的形式,大题往往结合三角函数图像与性质,解三角形,主要考查同角三角函数的基本关系式,三角函数的诱导公式,和、差、倍、半、和积互化公式在求三角函数值时的应用,考查利用三角公式进行恒等变形的技能,以及基本运算的能力,特别突出算理方法的考查.【2017年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出,三角恒等变换是研究三角函数的图象与性质,解三角形的基础,在高考中单独命题的情况很少,大多数省份对于三角恒等变换的考查,是结合三角函数的图象与性质,解三角形进行命题,由此可见,高考加大了对三角恒等变换的考查力度,高考命题考查的重点是诱导公式公式,同角三角函数基本关系,两角和与差的正弦、余弦、正切公式以及二倍角公式.预测在2017年的高考试卷中,三角函数式的恒等变形,如利用有关公式求值,与三角函图象与性质结合,或与解三角形结合,解决简单的综合问题,在填空题和选择题中出现,主要考查"三基"(基础知识、基本技能、基本思想和方法)以及综合能力,难度多为容易题和中档题.故在2017年复习备考过程中既要注重三角知识的基础性,突出三角函数的图象、周期性、单调性、奇偶性、对称性等性质.以及化简、求值和最值等重点内容的复习,又要注重三角知识的工具性,突出三角与代数、几何、向量的综合联系,以及三角知识的应用意识.这部分常常以选择题和填空题的形式出现,有时也以大题的形式出现,因此能否掌握好本重点内容,在一定的程度上制约着在高考中成功与否.在2017年复习备考过程中既要注重以下几点:1.两角和与两角差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式在学习时应注意以下几点:(1)不仅对公式的正用逆用要熟悉,而且对公式的变形应用也要熟悉;(2)善于拆角、拼角,如,等;(3)注意倍角的相对性(4)要时时注意角的范围(5)化简要求:熟悉常用的方法与技巧,如切化弦,异名化同名,异角化同角等.2.证明三角等式的思路和方法.(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式.(2)证明三角不等式的方法:比较法、配方法、反证法、分析法,利用函数的单调性,利用正、余弦函数的有界性,利用单位圆三角函数线及判别法等.3.解答三角高考题的策略.(1)发现差异:观察角、函数运算间...