电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

备战高考数学大一轮复习 热点聚焦与扩展 专题13 利用导数证明数列不等式-人教版高三全册数学试题VIP免费

备战高考数学大一轮复习 热点聚焦与扩展 专题13 利用导数证明数列不等式-人教版高三全册数学试题_第1页
1/42
备战高考数学大一轮复习 热点聚焦与扩展 专题13 利用导数证明数列不等式-人教版高三全册数学试题_第2页
2/42
备战高考数学大一轮复习 热点聚焦与扩展 专题13 利用导数证明数列不等式-人教版高三全册数学试题_第3页
3/42
专题13利用导数证明数列不等式【热点聚焦与扩展】利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型.1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题(2)利用递推公式处理通项公式中的不等问题2、恒成立不等式的(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式.3、常见恒成立不等式:(1)对数→多项式(2)指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消.注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】例1【2018届浙江省绍兴市高三3月模拟】已知数列满足:,.(其中为自然对数的底数,)(Ⅰ)证明:;(Ⅱ)设,是否存在实数,使得对任意成立?若存在,求出的一个值;若不存在,请说明理由.【答案】(1)见解析(2)不存在满足条件的实数【解析】试题分析:(1)第(Ⅰ)问,先证明一个不等式,再利用该不等式证明.(2)第(Ⅱ)问,先利用数学归纳法证明,再利用该不等式证明不存在实数M.(Ⅱ)先用数学归纳法证明.①当时,.②假设当时,不等式成立,那么当时,,也成立.故对都有.所以.取,.【名师点睛】本题难点在于思路的找寻,本题难度较大.第(Ⅰ)问,先证明一个不等式,第(Ⅱ)问,先利用数学归纳法证明,之所以要证明这两个不等式,当然是对试题整体分析的结果.例2【2017浙江,22】已知数列{xn}满足:x1=1,xn=xn+1+ln(1+xn+1)().证明:当时,(Ⅰ)0<xn+1<xn;(Ⅱ)2xn+1−xn≤;(Ⅲ)≤xn≤.【答案】(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)见解析.【解析】(Ⅱ)由得【名师点睛】本题主要考查数列的概念、递推关系与单调性等基础知识,不等式及其应用,同时考查推理论证能力、分析问题和解决问题的能力,属于难题.本题主要应用:(1)数学归纳法证明不等式;(2)构造函数,利用函数的单调性证明不等式;(3)由递推关系证明.例3.已知函数在处取得极值(1)求实数的值(2)证明:对于任意的正整数,不等式都成立【答案】(1)1;(2)见解析.【解析】(1)为的极值点(2)思路一:联想所证不等式与题目所给函数的联系,会发现在中,存在对数,且左边数列的通项公式也具备项的特征,所以考虑分析与的大小关系,然后与数列进行联系.解:下面求的单调区间,令即(每一个函数的最值都会为我们提供一个恒成立的不等式,不用【名师点睛】(1)此不等式实质是两组数列求和后的大小关系(),通过对应项的大小关系决定求和式子的大小.此题在比较项的大小时关键是利用一个恰当的函数的最值,而这个函数往往由题目所给.另外有两点注意:①关注函数最值所产生的恒成立不等式②注意不等号的方向应该与所证不等式同向(2)解决问题后便明白所证不等式为何右边只有一个对数,其实也是...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

备战高考数学大一轮复习 热点聚焦与扩展 专题13 利用导数证明数列不等式-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部