专题06函数的图象【热点聚焦与扩展】高考对函数图象的考查,形式多样,命题形式主要有,由函数的性质及解析式选图;由函数的图象来研究函数的性质、图象的变换、数形结合解决问题等,其重点是基本初等函数的图象以及函数的性质在图象上的直观体现.常常与导数结合考查.(一)基础知识1、描点法作函数图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.2、做草图需要注意的信息点:做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图象形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图象更好体现函数的性质,有一些信息点也要在图象中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点:(1)一次函数:,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线.特点:两点确定一条直线.信息点:与坐标轴的交点.(2)二次函数:,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图象,另一侧由对称性可得.函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图象更为精确.特点:对称性信息点:对称轴,极值点,坐标轴交点.(3)反比例函数:,其定义域为,是奇函数,只需做出正版轴图象即可(负半轴依靠对称做出),坐标轴为函数的渐近线.特点:奇函数(图象关于原点中心对称),渐近线.信息点:渐近线注:(1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,轴是渐近线,那么当,曲线无限向轴接近,但不相交,则函数在正半轴就不会有轴下方的部分。(2)水平渐近线的判定:需要对函数值进行估计:若(或)时,常数,则称直线为函数的水平渐近线例如:当时,,故在轴正方向不存在渐近线当时,,故在轴负方向存在渐近线(3)竖直渐近线的判定:首先在处无定义,且当时,(或),那么称为的竖直渐近线例如:在处无定义,当时,,所以为的一条渐近线.综上所述:在作图时以下信息点值得通过计算后体现在图象中:与坐标轴的交点;对称轴与对称中心;极值点;渐近线.2、函数图象变换:设函数,其它参数均为正数(1)平移变换::的图象向左平移个单位:的图象向右平移个单位:的图象向上平移个单位:的图象向下平移个单位(2)对称变换::与的图象关于轴对称:与的图象关于轴对称:与的图象关于原点对称(3)伸缩变换::图象纵坐标不变,横坐标变为原来的:图象横坐标不变,纵坐标变为原来的(4)翻折变换::即正半轴的图象不变,负半轴的原图象不要,换上与正半轴图象关于轴对称的图象:即轴上方的图象不变,下方的图象沿轴对称的翻上去.(二)方法与技巧:1、在处理有关判断正确图象的选择题中,常用的方法是排除法,通过寻找四个选项的不同,再结合函数的性质即可进行排除,常见的区分要素如下:(1)单调性:导函数的符号决定原函数的单调性,导函数图象位于轴上方的区域表示原函数的单调增区间,位于轴下方的区域表示原函数的单调减区间(2)函数零点周围的函数值符号:可通过带入零点附近的特殊点来进行区分(3)极值点(4)对称性(奇偶性)——易于判断,进而优先观察(5)函数的凹凸性:导函数的单调性决定原函数的凹凸性,导函数增区间即为函数的下凸部分,减区间为函数的上凸部分.2、利用图象变换作图的步骤:(1)寻找到模板函数(以此函数作为基础进行图象变换)(2)找到所求函数与的联系(3)根据联系制定变换策略,对图象进行变换.3、如何制定图象变换的策略(1)在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下:①若变换发生在“括号”内部,则属于横坐标的变换②若变换发生在“括号”外部,则...