高一数学等比数列人教实验A版【本讲教育信息】一.教学内容:等比数列二.重点、难点:1.定义:)0(1qqaann2.关键量:qa,13.通项:11nnqaa,mnmnqaa4.前n项和:)1(1)1()1(11qqqaqnaSnn5.若qpnm,则qpnmaaaa6.任意两个同号实数a,b,有等比中项ab【典型例题】[例1]在等比数列}{na,已知51a,100109aa,求18a。解: 109181aaaa∴205100110918aaaa[例2]设}{na是等差数列,nanb)21(,已知821321bbb,81321bbb,(1)求证:数列}{nb是等比数列;(2)求等差数列}{na的通项na。解:(1)证: daaaannnnnnbb)21()21()21()21(111常数∴数列}{nb是等比数列(2)由81)(32321bbbb,得212b设数列}{nb公比为q,则qbbqbbbb222321821)11(21qq解得4q或41当4q时,nannnnqbb)21()21(42152222,所以52nan当41q时,nannnnqbb)21()21()41(2132222,所以32nan用心爱心专心∴52nan或32n[例3]在等比数列}{na中:(1)已知nna23,求6S;(2)已知2561a,15a,求5S。解:(1)由nna23,得62311a,2232311nnnnaaq,则37821)21(61)1(6616qqaS(2)由415qaa,得48154)41(2125612561aaq,解得41q当41q时,34141141)1(2561515qqaaS当41q时,205)41(1)41()1(2561515qqaaS[例4]在等比数列}{na中:(1)已知96,361aa,求q与6S;(2)已知21q,115S,求1a与5a。解:(1)易知1q,由等比数列的通项公式与前n项和公式,得qqSq196339665,解得18926Sq(2)由等比数列的通项公式与前n项和公式,得)21(1])21(1[11)21(51415aaa,解得11651aa[例5]首项为0a,公比为0q,等比数列}{na,6560,8042nnSS,求nS3。解:(1)6560,80,142nnSSq不合题意(2)65601)1(801)1(14121qqaqqaqnn∴8212nq812nq9nq用心爱心专心∴111qa72811)1(3313nnnqqqaS[例6]}{na成等比数列1q,24217aa,前n项和为nS,数列}{nb满足1nnba,nnbbbT21,求使nnTS成立的n的最小值。解:首项为a,公比为q2312161)(qaqa∴191qannTSqqaqqann11)11(11)1(11nnqqaqq)1()1(11121nqa0191qqn∴019n∴n=20[例7]}{na等比数列各项均为正数,求证:23121nnnaaaaaa解:)()(121nnaaaa211111nnqaqaqaa)1(121nnqqqa)1)(1(21nqqa*)1,0(q时,)1(),1(2nqq同正0*1q时,0*),1(q时,)1(),1(2nqq同负0*∴121nnaaaa其它同理可证[例8]两方程012pxx,012qxx的四个根组成以2为公比的等比数列,求22qp。解:aaaa8,4,2,依题意,14)2()8(aaaa∴812a8534492222aaqp[例9]正数x,它的小数部分,整数部分及本身成等比数列,求x。解:设tmx,*Nm,)1,0(t∴tmmtmtmmt1用心爱心专心 tm∴)2,1(1mt∴21tmtmt2∴1m∴215t∴215x[例10]0a且1a,数列}{na为首项为a,公比为a的等比数列,nnnaablg)(*Nn,若nb的每一项总小于它后面的一项,求a的范围。解:nnnaaaa1)(*Nnaanaabnnnnlglg1nnbb对一切*Nn成立aanaannnlg)1(lg1aaannlglg1(1))1,0(a,0lga∴)1,21[1111nnna,恒成立∴)21,0(a(2)),1(a,0lga∴)1,21[1nna恒成立∴),1(a综上所述),1()21,0(a【模拟试题】(答题时间:30分钟)1.若数列}{na为等比数列,则下列数列中一定是等比数列的个数为()(1)}{2na(2)}1{na(3)|}{|na(4)}{logna(5)}{1nnaa(6)}{1nnaaA.3B.4C.5D.62.在等比数列}{na中,若93a,...