高一下学期期末复习练习等比数列[重点]等比数列的概念,等比数列的通项公式,等比数列的前n项和公式。1.定义:数列{an}若满足nnaa1=q(qq,0为常数)称为等比数列。q为公比。2.通项公式:an=a1qn-1(a10、q0)。3.前n项和公式:Sn=qqaaqqanann11)1(111(q1)4.性质:(1)an=amqn-m。(2)若m+n=s+t,则aman=asat,特别地,若m+n=2p,则aman=a2p,(3)记A=a1+a2+…+an,B=an+1+an+2+…a2n,C=a2n+1+a2n+2…+a3n,则A、B、C成等比数列。5.方程思想:等比数列中的五个元素a1、q、n、an、Sn中,最基本的元素是a1和q,数列中的其它元素都可以用这两个元素来表示。函数思想:等比数列的通项和前n次和都可以认为是关于n的函数。[难点]等比数列前n项和公式的推导,化归思想的应用。例题选讲1.(湖北)若互不相等的实数,,abc成等差数列,,,cab成等比数列,且310abc,则a()A.4B.2C.-2D.-42.(辽宁)(9)在等比数列na中,12a,前n项和为nS,若数列1na也是等比数列,则nS等于()(A)122n(B)3n(C)2n(D)31n3.已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3,…(1)证明数列{lg(1+an)}是等比数列;(2)设Tn=(1+a1)(1+a2)…(1+an),求Tn及数列{an}的通项;(3)记bn=211nnaa,求{bn}数列的前项和Sn,并证明Sn+132nT=1.一、选择题1.在公比q1的等比数列{an}中,若am=p,则am+n的值为()(A)pqn+1(B)pqn-1(C)pqn(D)pqm+n-12.若数列{an}是等比数列,公比为q,则下列命题中是真命题的是()(A)若q>1,则an+1>an(B)若00,b>0,a,b在a与b之间插入n个正数x1,x2,…,xn,使a,x1,x2…,xn,b成等比数列,则nnxxx21=4.已知首项为21,公比为q(q>0)的等比数列的第m,n,k项顺次为M,N,K,则(n-k)log21M+(k-m)log21N+(m-n)log21K=5.若数列{an}为等比数列,其中a3,a9是方程3x2+kx+7=0的两根,且(a3+a9)2=3a5a7+2,则实数k=6....