微专题32机械能守恒定律在连接体问题中的应用【核心要点提示】机械能守恒定律理解的三种形式:1.守恒观点(1)表达式:Ek1+Ep1=Ek2+Ep2或E1=E2.(2)意义:系统初状态的机械能等于末状态的机械能.(3)注意:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面.2.转化观点(1)表达式:ΔEk=-ΔEp.(2)意义:系统的机械能守恒时,系统增加(或减少)的动能等于系统减少(或增加)的势能.3.转移观点(1)表达式:ΔEA增=ΔEB减.(2)意义:若系统由A、B两部分组成,当系统的机械能守恒时,则A部分机械能的增加量等于B部分机械能的减少量.【微专题训练】类型一:速率相等的连接体模型1.如图所示的两物体组成的系统,当释放B而使A、B运动的过程中,A、B的速度均沿绳子方向,在相等时间内A、B运动的路程相等,则A、B的速率相等。2.判断系统的机械能是否守恒不从做功角度判断,而从能量转化的角度判断,即:如果系统中只有动能和势能相互转化,系统的机械能守恒。这类题目的典型特点是系统不受摩擦力作用。(2017·福建八县一中联考)(多选)如图所示,倾角为30°、高为L的固定斜面底端与水平面平滑相连,质量分别为3m、m的两个小球A、B用一根长为L的轻绳连接,A球置于斜面顶端。现由静止释放A、B两球,B球与弧形挡板碰撞过程时间极短,无机械能损失,且碰后只能沿斜面下滑,两球最终均滑到水平面上。已知重力加速度为g,不计一切摩擦,则(ABD)A.A球刚滑至水平面上时的速度大小为1B.B球刚滑至水平面上时的速度大小为C.两小球在水平面上不可能相撞D.在A球沿斜面下滑的过程中,轻绳对B球先做正功,后不做功[解析]从A球开始下滑到A球落地的过程中,系统的机械能守恒,A球到达水平面上时B球在斜面的中点上,则有3mgL-mg=(4m)v2,解得v=,故A正确;A球滑到水平面后,A球的速度不再变化,而B球速度继续增大,此时轻绳对B球不再有力的作用,对B球由机械能守恒可知mgL=mv′2-mv2,解得B球最终滑到水平面上时速度v′=,故B正确;B球滑到水平面上,由于B球的速度大于A球的速度,故两球最终一定会相撞,故C错误;由题意可知,开始时,B球动能增加,轻绳对B球做正功,当A球沿斜面下滑一半距离后,A、B球一起沿斜面下滑,速度和加速度均相等,故轻绳无拉力,轻绳不再做功,故D正确。(2018·湖北省黄冈中学月考)如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D点。用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A和B,使滑轮左侧绳子始终与斜面平行,初始时A位于斜面的C点,C、D两点间的距离为L。现由静止同时释放A、B,物体A沿斜面向下运动,将弹簧压缩到最短的位置E点,D、E两点间的距离为。若A、B的质量分别为4m和m,A与斜面间的动摩擦因数μ=,不计空气阻力,重力加速度为g,整个过程中,轻绳始终处于伸直状态,则(BD)A.A在从C至E的过程中,先做匀加速运动,后做匀减速运动B.A在从C至D的过程中,加速度大小为gC.弹簧的最大弹性势能为mgLD.弹簧的最大弹性势能为mgL[解析]对A、B整体从C到D的过程受力分析,根据牛顿第二定律得a==g,从D点开始与弹簧接触,压缩弹簧,弹簧被压缩到E点的过程中,弹簧的弹力是变力,则加速度是变化的,所以A在从C至E的过程中,先做匀加速运动,后做变加速运动,最后做变减速运动,直到速度为零,故A错误,B正确;当A的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对A、B整体应用动能定理得4mg(L+)sin30°-mg(L+)-μ(4mg)cos30°(L+)-W弹=0,解得W弹=mgL,则弹簧具有的最大弹性势能Ep=W弹=mgL,故C错误,D正确。类型二:角速度相等的连接体模型1.如图所示的两物体组成的系统,当释放后A、B在竖直平面内绕O点的轴转动,在转动2的过程中相等时间内A、B转过的角度相等,则A、B转动的角速度相等。2.系统机械能守恒的特点(1)一个物体的机械能增加,另一个物体的机械能必然减少,机械能通过内力做功实现物体间的转移。(2)内力对一个物体做正功,必然对另外一个物体做负功,且二者代数和为零。【例题】(2016·山西太原高三一模)如图,质量分别为m和2m的两...