电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

路径问题--教学设计VIP免费

路径问题--教学设计_第1页
1/5
路径问题--教学设计_第2页
2/5
路径问题--教学设计_第3页
3/5
最短路径问题教学设计玉泉二中张艳【教学目标】1、能利用轴对称解决简单的最短路径问题。2、体会图形的变化在解决最值问题中的作用,感悟转化思想,丰富数学活动经验。3、让学生经历将实际问题抽象为数学问题来解决的过程,培养学生问题解决的能力。【重点难点】重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题。难点:如何利用轴对称将最短路径问题转化为线段和最小问题。【教学手段】多媒体【知识准备】1、如图1,从A点到B点最短的路径是,理由:。2、如图2,点A与点B关于直线CD对称,点P是直线CD上任意一点,线段PA与线段PB的数量关系是。设计意图:本节课主要通过“两点之间,线段最短”和“轴对称性”来解决生活中出现的部分最短路径问题,直接出示,目标明确,为后面学生对问题的探究作好铺垫。【自主探究】1、“异侧”最短路径问题情境1:济源正在进行天燃气管道改造(如图)。现需要向A、B两个小区供气,问:当A、B异侧时,泵站应修在主管道L的什么地方,可使所用的输气管线最短?师:你能用自己的语言说明这个实际问题抽象为数学问题吗?AB图1①③②④BACDPC1生:我们可以把两个小区看成两个点,把管道l看成一条直线,找到一个点C使它到A、B两点之和最短。师:请尝试操作。(学生尝试作图)生:根据“两点之间,线段最短”,可连接A、B两点交直线l于点C,则点C即为泵站的位置。设计意图:问题1从生活情景入手,让学生经历把实际问题抽象为数学问题的意识,体会用“两点之间,线段最短”解决“异侧”最短路径问题。【互动释疑】2、“同侧”最短路径问题情境2:济源正在进行天燃气管道改造(如图)。现需要向A、B两个小区供气,问:当A、B同侧时,泵站应修在主管道L的什么地方,可使所用的输气管线最短?(1)画一画:问题1:当小区A、B由异侧变为同侧时,泵站的位置在哪里?(师生活动:学生独立思考,画图分析,教师巡视,发现共性作图方法,展示台出示共性问题。)(2)猜一猜:问题2:图1、图2这两种画法,哪个路径较短?你是怎样做的?师:小组合作,猜想结果,尝试说明理由。(师生活动:小组合作,汇报结果,得出猜想结论。)2¡¤lB′B′BA¡¤CC(3)证一证:师:根据轴对称做出的图形中AC+BC是否最短呢,我们在直线上任取一点C′(与点C不重合),必须验证后才知道。验证:在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.你能用所学的知识证明AC+BC最短吗?证明:由轴对称的性质知,BC=B’C,BC′=B’C’.∴AC+BC=A’B’,AC′+BC′=AC’+B’C’.在△AB′C′中AB’<AC′+B′C′∴AC+BC<AC′+BC′即AC+BC最短师:图中我们做点B的对称点,那做A的对称点,行吗?(教师板书)归纳提升利用我们学过的“两点之间,线段最短”、轴对称性及三角形三边关系,并把“同侧”最短路径问题转化为“异侧”路径问题。同时也经历了“操作——猜想——验证”的过程,那究竟掌握得怎么样呢,CB′P3让我们学以致用。设计意图:通过搭建台阶,为学生探究问题提供“脚手架”,将“同侧”难于解决的问题转化为“异侧”容易解决的问题,渗透转化思想。通过学生课堂生成的资源,让由“垂线段最短”作出的错误图形与正确图形对比,经历合作探究,“操作——猜想——验证”的过程,为下一步的“应用”打下基础。【反馈拓展】1、周长最短问题(一边一定)情境3:如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC上,再回到P处,请画出旅游船的最短路径。旅游船的最短路径:PQ+QD+DP【课堂小结】设计意图:让学生体会三角形周长最短问题即转化为同侧问题,进一步巩固解决最短路径问题的基本策略和基本方法,再次深刻体会轴对称在解决最短路径问题中的作用,感悟转化思想的重要价值。2、课后作业:(1)必做题:①相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边l饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?P′D4②课本93页:15题③如图公园内有两条小河,两河形成的半岛上有一处古迹P,现计划在...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

路径问题--教学设计

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部