第三讲圆锥曲线的综合应用年份卷别考查角度及命题位置命题分析及学科素养2018Ⅰ卷直线与抛物线的位置关系及证明问题·T20命题分析解析几何是数形结合的典范,是高中数学的主要知识板块,是高考考查的重点知识之一,在解答题中一般会综合考查直线、圆、圆锥曲线等.试题难度较大,多以压轴题出现.解答题的热点题型有:(1)直线与圆锥曲线位置关系;(2)圆锥曲线中定点、定值、最值及范围的求解;(3)轨迹方程及探索性问题的求解.学科素养解析几何综合问题主要利用直线与圆锥曲线的位置关系考查最值范围,定点定值及探索性问题,着重考查学生数学抽象、数学建模、逻辑推理及数学运算等核心素养.Ⅲ卷直线与椭圆的位置关系及证明问题·T202017Ⅰ卷直线与抛物线的位置关系及应用·T20Ⅱ卷动点轨迹方程求法及直线过程定点的证明·T202016Ⅰ卷直线与抛物线的位置关系、存在性问题·T20Ⅱ卷直线与椭圆的位置关系、面积问题及证明问题·T21Ⅲ卷直线与抛物线的位置关系、证明问题及轨迹方程的求法·T20第一课时圆锥曲线的最值、范围、证明问题最值问题授课提示:对应学生用书第47页[悟通——方法结论]求解圆锥曲线中的最值问题主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.(2017·高考浙江卷)(12分)如图,已知抛物线x2=y,点上的点P(x,y)过点B作直线AP的垂线,垂足为Q.(1)求直线AP斜率的取值范围;(2)求的最大值.[学审题]条件信息想到方法注意什么信息❶中已知A,P坐标利用斜率公式表示kAP并消去yx的范围信息❷中|PA|·|PQ|利用弦长公式表示出|PA|·|PQ|Q点坐标的求法[规范解答](1)设直线AP的斜率为k,k==x-,(2分)因为-<x<,所以直线AP斜率的取值范围是(-1,1).(4分)(2)联立直线AP与BQ的方程(6分)解得点Q的横坐标是xQ=.因为|PA|==(k+1),(8分)|PQ|=(xQ-x)=-.所以|PA|·|PQ|=-(k-1)(k+1)3.(10分)令f(k)=-(k-1)(k+1)3,因为f′(k)=-(4k-2)(k+1)2,所以f(k)在区间上单调递增,上单调递减,因此当k=时,|PA|·|PQ|取得最大值.(12分)【类题通法】1.几何法:题中给出的条件有明显的几何特征,考虑用图象性质来解决,这是几何法,充分体现了数形结合思想.2.代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值.求函数最值的常见方法有配方法、判别式法、基本不等式法、单调性法、三角换元法等.充分体现了函数与方程思想.[练通——即学即用](2018·沈阳模拟)已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,点P(1,)在椭圆上,且有|PF1|+|PF2|=2.(1)求椭圆C的标准方程;(2)过F2的直线l与椭圆C交于A,B两点,求△AOB(O为坐标原点)面积的最大值.解析:(1)由|PF1|+|PF2|=2,得2a=2,∴a=.将P(1,)代入+=1,得b2=1.∴椭圆C的标准方程为+y2=1.(2)由已知,直线l的斜率为零时,不合题意,设直线l的方程为x-1=my,A(x1,y1),B(x2,y2),联立,得消去x化简整理得(m2+2)y2+2my-1=0,由根与系数的关系,得S△AOB=|OF2|·|y1-y2|===×=×=×≤×=,当且仅当m2+1=,即m=0时,等号成立,∴△AOB面积的最大值为.范围问题授课提示:对应学生用书第48页[悟通——方法结论]圆锥曲线中的范围问题(1)解决这类问题的基本思路是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.(2018·广东五校联考)(12分)已知椭圆C:+=1(a>b>0)的两焦点与短轴的一个端点的连线构直线x+y+1=0与以椭圆C.(1)求椭圆C的方程;(2)两点S和T,若椭圆C上存在点P满足(其中O为坐标原点),求实数t的取值范围.[学审题]条件信息想到方法注意什么信息❶中构成等腰直角三角形b=c,a=c注意短半轴与半焦距的关系信息❷中直线与圆相切想到圆心到x+y+1=0的距离d=a点到直线距离公式信息❸中直线与椭圆交...