2016年内蒙古呼和浩特市高考数学二模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知复数z满足=i,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={y|y=2x+1},B={x|x2+x>0},A∩B=()A.{x|x>0}B.{x|﹣1<x<1}C.{x|x>1}D.{x|x>0或x<﹣1}3.函数f(x)=ln(x+1)﹣的零点所在区间是()A.(,1)B.(1,e﹣1)C.(e﹣1,2)D.(2,e)4.阅读程序框图,若输出S的值为﹣14,则判断框内可填写()A.i<6?B.i<8?C.i<5?D.i<7?5.已知正项等比数列{an}的前n项和为Sn,a2+a3=6a1,则等于()A.5B.6C.8D.96.不等式组表示的平面区域的整点(即横、纵坐标均为整数的点)的总数是()A.23B.21C.19D.187.某几何体的三视图如图所示,则其侧面积为()A.B.C.D.8.||=1,||=2,•=0,点D在∠CAB内,且∠DAB=30°,设=λ+μ(λ,μ∈R),则等于()A.3B.C.D.29.已知函数f(x)=Acos(ωx+φ)的图象如图所示,f()=﹣,则f()=()A.﹣B.﹣C.D.10.已知点A(0,2),抛物线C:y2=mx(m>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则三角形OFN的面积为()A.2B.2C.4D.211.已知平面α截一球面得圆M,过圆心M与α成60°二面角的平面β截该球面得圆N,若该球的表面积为64π,圆M的面积为4π,则圆N的半径为()A.B.3C.D.12.已知a<0,则x0满足关于x的方程ax=b的充要条件是()A.∃x∈R,ax2﹣bx≥ax﹣bx0B.∃x∈R,ax2﹣bx≤ax﹣bx0C.∀x∈R,ax2﹣bx≥ax﹣bx0D.∀x∈R,ax2﹣bx≤ax﹣bx0二、填空题(共4小题,每小题5分,满分20分)13.双曲线x2﹣4y2=2的虚轴长是.14.从5台甲型和4台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,则不同的取法共有种.15.《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?.(只需写出一个答案即可)16.已知数列{an}的各项均为正整数,对于n∈N*有an+1=(其中k为使an+1为奇数的正整数).a1=11时,a65=.三、解答题(共5小题,满分60分)17.已知函数f(x)=.(Ⅰ)若f(a)=,求tan(a+)的值;(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a﹣c)cosB=bcosC,若f(A)=,试证明:a2+b2+c2=ab+bc+ca.18.如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PD中点.(Ⅰ)求证:直线AF∥平面PEC;(Ⅱ)求PC与平面PAB所成角的正弦值.19.某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18,(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下两种方案:方案1:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;方案2:不采取措施,此时,当两条河流都发生洪水时损失为60000元,只有一条河流发生洪水时,损失为10000元.(Ⅰ)试求方案2中损失费ξ(随机变量)的分布列及期望;(Ⅱ)试比较哪一种方案好.20.在直角坐标系xOy中,已知中心在原点,焦点在x轴上的椭圆E的离心率为,且过点M(2,3).(Ⅰ)求椭圆E的方程;(Ⅱ)设P是椭圆E上一点,过P作两条斜率之积的直线l1,l2.以椭圆E的右焦点C为圆心为半径作圆,当直线l1,l2都与圆C相切时,求P的坐标.21.已知函数f(x)=x2﹣alnx+(a﹣1)x,其中a∈R.(Ⅰ)当a≤0时,讨论函数f(x)的单调性;(Ⅱ)若对任意x1,x2∈(1,∞),且x1≠x2,>﹣1恒成立,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.已知△ABC中,AB=AC,D为△ABC外接圆劣弧上的点(不与点A,C重合),延长BD至E,延长AD交BC的延长线于F(1)求证:∠CDF=∠EDF;(2)求证:AB•AC•DF=AD•FC•FB.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,射线OM...