考点41圆锥曲线中的定点、定值与存在性问题【考纲要求】应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求有关定值、定点的问题.【命题规律】圆锥曲线中的定点、定值与存在性问题一般在解答题中考查.难度较大.【典型高考试题变式】(一)定值问题例1.【2017课标卷】在直角坐标系xOy中,曲线与x轴交于A,B两点,点C的坐标为.当m变化时,解答下列问题:(1)能否出现AC⊥BC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.【解析】(1)令,,C(0,1),为的根,假设成立,所以,,,所以,所以不能出现的情况.【名师点睛】直线与圆综合问题的常见类型及解题策略:处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形.代数方法:运用根与系数的关系及弦长公式:;圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.【变式1】【河北省衡水中学2016届高三上学期七调考试数学(理)试题】(本小题满分12分)已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)设,过点作与轴不重合的直线交椭圆于两点,连接分别交直线于两点,若直线的斜率分别为,试问:是否为定值?若是,求出该定值,若不是,请说明理由.【解析】(1)由题意得,故椭圆的方程为.(2)设,直线的方程为,由,由三点共线可知同理可得,所以.【变式2】【2016北京卷】已知椭圆C:过点A(2,0),B(0,1)两点.(1)求椭圆C的方程及离心率;(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.【解析】(1)由题意得,,.所以椭圆的方程为.又,所以离心率.令,得,从而.所以四边形的面积.从而四边形的面积为定值.(二)定点问题例2.【2017课标1】已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.【分析】(1)根据,两点关于y轴对称,由椭圆的对称性可知C经过,两点.另外由知,C不经过点P1,所以点P2在C上.因此在椭圆上,代入其标准方程,即可求出C的方程;(2)先设直线P2A与直线P2B的斜率分别为k1,k2,再设直线l的方程,当l与x轴垂直时,通过计算,不满足题意,再设l:(),将代入,写出判别式,利用根与系数的关系表示出x1+x2,x1x2,进而表示出,根据列出等式表示出和的关系,从而判断出直线恒过定点.【解析】(1)由于,两点关于y轴对称,故由题设知C经过,两点.又由知,C不经过点P1,所以点P2在C上.因此解得故C的方程为.由题设可知.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.而.由题设,故.即.解得.当且仅当时,,于是l:,即,所以l过定点(2,).【名师点睛】椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.【变式1】【2017江西南昌市摸底】已知椭圆短轴的一个端点与其两个焦点构成面积为3的直角三角形.(1)求椭圆的方程;(2)过圆上任意一点作圆的切线,与椭圆交于两点,以为直径的圆是否过定点,如过,求出该定点;不过说明理由.【解析】(1)因为椭圆短轴的一个端点和其两个焦点构成直角三角形,所以,故椭圆的方程为,(2)圆的方程为,设为坐标原点当直线的斜率不存在时,不妨设直线AB方程为,则,所以,所以为直径的圆过坐标原点当直线的斜率存在时,设其方程设为,设因为直线与相关圆相切,所以联立方程组得,即,,,,,所以为直径的圆恒过坐标原点.【数学思想】①数形结合思想.②分类讨论思想.③转化与化归思想.【温馨提示】解决圆锥曲线中的定值问题的基本思路很明...