专题03特例法方法探究特例法对解决有关数学题目是一种非常独特且十分有效的方法,它可以使繁杂的问题处理简易化,收到事半功倍的效果.特例法也就是我们常说的特殊值验证法,有时也用特殊数值、特殊图形、特殊位置代替题设中普遍条件,得出特殊结论,再对各选项进行检验,从而做出正确的选择.特别是对于一些比较棘手的高考选择题或填空题,若能注意到其特殊情况,从特殊性入手,也许就可以简捷快速地解决问题.常用的特例有特殊数值、特殊点、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.特例法是解答选择题的最佳方法之一,具体是通过特例的方式提高解题速度,题中的一般情况必须满足我们取值的特殊情况,从而我们选取适当的特值帮助我们得到正确的结论.比如,某个数列,可以考虑等差数列或等比数列的情形;某个三角形,可以考虑直角三角形或等边三角形;椭圆上某点,可以考虑长轴或短轴的端点等,但考虑的前提是一定要满足这种情况适合题中所有条件.特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题或填空题,但使用时一定要注意:(1)取特例尽可能简单,有利于计算和推理;(2)若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解;(3)当正确的选择对象,在题设普遍条件下都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,这是解答本类选择、填空题的最佳策略.近年来高考选择、填空题中可用或结合用特例法解答的试题能占到30%左右,所以要想快速准确地赢得时间获取高分,一定要学会、会用并且灵活使用特例法!经典示例【例1】(利用特殊值)若实数,则下列不等式中一定成立的是A.B.C.D.【答案】D【解析】对于A,当时,不成立,所以是错误的;对于B,取时,不成立,所以是错误的;对于C,取时,不成立,所以是错误的;对于D,由,所以是正确的,故选D.【名师点睛】本题主要考查了不等式的基本性质,其中熟记不等式的基本性质的使用条件和推理方法是解答的关键,着重考查了推理与论证能力.通过不等式的性质的推理和举出反例,即可作出判断.【备考警示】本题在选取a,b的值时,一定要满足条件,才可以正确求解.【例2】(利用特殊函数)下列有关函数单调性的说法,不正确的是A.若f(x)为增函数,g(x)为增函数,则f(x)+g(x)为增函数B.若f(x)为减函数,g(x)为减函数,则f(x)+g(x)为减函数C.若f(x)为增函数,g(x)为减函数,则f(x)+g(x)为增函数D.若f(x)为减函数,g(x)为增函数,则f(x)-g(x)为减函数【答案】C方法二:设任意实数,根据为增函数,为减函数,则,,设,当时,,由于,,所以的符号不确定,即的单调性不确定,故选C.【方法点睛】根据函数单调性定义,可以进行证明并得到下面结论:在公共的定义域内,增函数增函数增函数;减函数减函数减函数;增函数减函数增函数;减函数增函数减函数.在解选择题、填空题时我们可以根据此结论直接对常见函数进行单调性的判断.【备考警示】很明显,方法一要比方法二更简洁,比利用结论更直观.【例3】(利用特殊数列)已知数列是等比数列,其公比为,则“”是“数列为单调递增数列“的”A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】D【名师点睛】一般地,等比数列为单调递增数列的充要条件是或.等差数列为单调递增数列的充要条件是公差.【备考警示】等比数列的通项公式为,故其单调性不仅取决于的符号,还要考虑还是.所以本题直接求解比较困难,而选取特殊值,构造特殊数列会简单快捷得多.【例4】(利用特殊位置)在三棱锥中,底面为直角三角形,且,斜边上的高为,三棱锥的外接球的直径是,若该外接球的表面积为,则三棱锥的体积的最大值为__________.【答案】【解析】如图所示,由外接球的表面积为,可得外接球的半径为,则,设,则,又边上的高,当平面时,棱锥的体积最大,此时,易知当时,体积最大,且最大值为.【名师点睛】本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,...