课后限时集训5函数的单调性与最值建议用时:45分钟一、选择题1.下列函数中,在区间(0,+∞)内单调递减的是()A.y=-xB.y=x2-xC.y=lnx-xD.y=ex-xA[对于A,y1=在(0,+∞)内是减函数,y2=x在(0,+∞)内是增函数,则y=-x在(0,+∞)内是减函数;B,C选项中的函数在(0,+∞)上均不单调;选项D中,y′=ex-1,而当x∈(0,+∞)时,y′>0,所以函数y=ex-x在(0,+∞)上是增函数.]2.函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)D[由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞),注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).]3.若函数f(x)=x2+a|x|+2,x∈R在区间[3,+∞)和[-2,-1]上均为增函数,则实数a的取值范围是()A.B.[-6,-4]C.[-3,-2]D.[-4,-3]B[由于f(x)为R上的偶函数,因此只需考虑函数f(x)在(0,+∞)上的单调性即可.由题意知函数f(x)在[3,+∞)上为增函数,在[1,2]上为减函数,故-∈[2,3],即a∈[-6,-4].]4.已知函数f(x)是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f(2x-1)<f的x的取值范围是()A.B.C.D.D[因为函数f(x)是定义在区间[0,+∞)上的增函数,满足f(2x-1)<f.所以0≤2x-1<,解得≤x<.]5.已知函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数g(x)=在区间(1,+∞)上一定()A.有最小值B.有最大值C.是减函数D.是增函数D[由题意知a<1,若a≤0,则g(x)=x+-2a在(1,+∞)上单调递增;若0<a<1,g(x)=x+-2a在(,+∞)上单调递增,则g(x)在(1,+∞)上单调递增.综上可得,g(x)=x+-2a在区间(1,+∞)上是增函数.故选D.]二、填空题6.函数f(x)=-的值域为________.[-,][因为所以-2≤x≤4,所以函数f(x)的定义域为[-2,4].1又y1=,y2=-在区间[-2,4]上均为减函数,所以f(x)=-在[-2,4]上为减函数,所以f(4)≤f(x)≤f(-2),即-≤f(x)≤.]7.若f(x)=是定义在R上的减函数,则a的取值范围是________.[由题意知,解得所以a∈.]8.(2019·唐山模拟)设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是________.[0,1)[由题意知g(x)=函数图像如图所示,其递减区间是[0,1).]三、解答题9.已知f(x)=(x≠a).(1)若a=-2,试证f(x)在(-∞,-2)上单调递增;(2)若a>0且f(x)在(1,+∞)上单调递减,求实数a的取值范围.[解](1)证明:设x1<x2<-2,则f(x1)-f(x2)=-=.因为(x1+2)(x2+2)>0,x1-x2<0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在(-∞,-2)上单调递增.(2)设1<x1<x2,则f(x1)-f(x2)=-=.因为a>0,x2-x1>0,所以要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,所以a≤1.综上所述,实数a的取值范围是(0,1].10.已知函数f(x)=x2+a|x-2|-4.(1)当a=2时,求f(x)在[0,3]上的最大值和最小值;(2)若f(x)在区间[-1,+∞)上单调递增,求实数a的取值范围.[解](1)当a=2时,f(x)=x2+2|x-2|-4==当x∈[0,2]时,-1≤f(x)≤0,当x∈[2,3]时,0≤f(x)≤7,所以f(x)在[0,3]上的最大值为7,最小值为-1.(2)因为f(x)=又f(x)在区间[-1,+∞)上单调递增,所以当x>2时,f(x)单调递增,则-≤2,即a≥-4.当-1<x≤2时,f(x)单调递增,则≤-1.即a≤-2,且4+2a-2a-4≥4-2a+2a-4恒成立,故实数a的取值范围为[-4,-2].1.函数f(x)满足f(x+2)=3f(x),且x∈R,若当x∈[0,2]时,f(x)=x2-2x+2,则当2x∈[-4,-2]时,f(x)的最小值为()A.B.C.-D.-A[因为f(x+2)=3f(x),所以f(x)=f(x+2)=f(x+4).因为当x∈[0,2]时,f(x)=x2-2x+2,所以当x∈[-4,-2],即x+4∈[0,2]时,f(x)=f(x+4)=(x+3)2+,故当x=-3时,f(x)取得最小值,故选A.]2.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于()A.-1B.1C.6D.12C[由题意知当-2≤x≤1时,f(x)=x-2,...