专题01集合的概念与运算【高频考点解读】1.“”了解集合的含义、元素与集合的属于关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用韦恩(Venn)图表达集合的关系及运算.8.集合部分主要以考查集合的含义、基本关系与基本运算为主,题目简单、易做,大多都是送分题.9.近几年部分省市也力求创新,创造新情境,尽可能做到灵活多样,甚至进行一些小综合,比如新定义题目,与方程、不等式、函数、数列等内容相联系的题目出现.10.题型以选择题为主,大多都是试卷的第1题.【热点题型】题型一考查集合的基本概念例1、已知集合A={1,3,},B={1,m},A∪B=A,则m=()A.0或B.0或3C.1或D.1或3【提分秘籍】(1)研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.集合{x|f(x)=0}{x|f(x)>0}{x|y=f(x)}{y|y=f(x)}{(x,y)|y=f(x)}集合的意义方程f(x)=0的解集不等式f(x)>0的解集函数y=f(x)的定义域函数y=f(x)的值域函数y=f(x)图象上的点集(2)对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足互异性.【举一反三】已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为()A.3B.6C.8D.10【热点题型】题型二集合与集合的基本关系例2、已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.ABB.BAC.A=BD.A∩B=∅【解析】A={x|x2-x-2<0}={x|-1<x<2},B={x|-1<x<1},所以BA.【答案】B【提分秘籍】(1)判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.(2)若两个集合相等,首先分析已知元素在另一个集合中与哪一个元素相等,有几种情况等,然后列方程组求解,要注意挖掘题目中的隐含条件.(3)易错警示:①利用数形结合思想处理集合与集合之间的关系时,要注意数轴端点是实心还是空心.②题目中若有条件B⊆A,则应分B=和∅B≠∅两种情况讨论.【举一反三】已知集合A={x|x2-3x-10≤0},若B⊆A,B={x|m+1≤x≤2m-1},则实数m的取值范围________.【解析】由A={x|x2-3x-10≤0},得A={x|-2≤x≤5}, B⊆A,∴①若B=,∅则m+1>2m-1,即m<2,此时满足B⊆A.②若B≠∅,如图,则解得2≤m≤3.由①②得,m的取值范围是(∞-,3].【答案】(∞-,3]【热点题型】题型三集合的基本运算例3、设全集是实数集R,A={x|2x2-7x+3≤0},B={x|x2+a<0}.(1)当a=-4时,求A∩B和A∪B;(2)若(∁RA)∩B=B,求实数a的取值范围.【提分秘籍】(1)在进行集合运算时要尽可能地借助韦恩(Venn)图和数轴使抽象问题直观化.一般地集合元素离散时用韦恩(Venn)图表示;集合元素连续时用数轴表示,用数轴表示时注意端点值的取舍.(2)已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn图帮助分析,而且经常要对集合进行讨论.【举一反三】已知M,N为集合I的非空真子集,且M,N不相等,若N∩∁IM=,则∅M∪N=()A.MB.NC.ID.∅解析: N∩∁IM=,∴∅N⊆M,∴M∪N=M.答案:A【热点题型】题型四以集合为背景的新定义题例4、在整数集Z中,被5除所得余数为k“”的所有整数组成一个类,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4给出如下四个结论:①∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];“④整数a,b‘’”属于同一类“的充要条件是a-b∈[0]”.其中,正确结论的个数是()A.1B.2C.3D.4【提分秘籍】1.“”对类的正确理解(1“”)由类的定义知,[k]={5n+k|n∈Z},k=0,1,2,3,4,即Z中的所有元素共分为[0],[1],[2],[3],[4],5类.(2“)a,b‘’”属于同类⇒a=5n1+k,b=5n2+k⇒a-b=5(n1-n2);...