1.定义:2.定理(平行法):3.判定定理一(边边边):4.判定定理二(边角边):5.判定定理三(角角):1、判断两三角形相似有哪些方法?2、相似三角形有什么性质?对应角相等,对应边的比相等怎样测量旗杆的高度呢?ABOA′B′O′练习3.为了测量一池塘的宽AB,在岸边找到了一点C,使ACAB⊥,在AC上找到一点D,在BC上找到一点E,使DEAC⊥,测出AD=35m,DC=35m,DE=30m,那么你能算出池塘的宽AB吗?ABCDE例3:已知左,右并排的两棵大树的高分别是AB=8m和CD=12m,两树的根部的距离BD=5m。一个身高1.6m的人沿着正对着两棵树的一条水平直路从左向右前进,当他与左边较低的树的距离小于多少时,就不能看见右边较高的树的顶端点C?KⅡ盲区观察者看不到的区域。仰角:视线在水平线以上的夹角。水平线视线视点观察者眼睛的位置。(1)FBCDHGlAK(1)FBCDHGlAⅠKFABCDHGKⅠⅡl(2)分析:假设观察者从左向右走到点E时,他的眼睛的位置点F与两颗树的顶端点A、C恰在一条直线上,如果观察者继续前进,由于这棵树的遮挡,右边树的顶端点C在观察者的盲区之内,观察者看不到它。E由题意可知,ABL⊥,CDL⊥,∴ABCD∥,△AFHCFK∽△∴FHFK=AHCK即FHFH+5=8-1.612-1.6解得FH=8∴当他与左边的树的距离小于8m时,由于这棵树的遮挡,右边树的顶端点C在观察者的盲区之内,就不能看见右边较高的树的顶端点C4、如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为米.6、如图,已知零件的外径a为25cm,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=3,且量得CD=7cm,求厚度x。O(分析:如图,要想求厚度x,根据条件可知,首先得求出内孔直径AB。而在图中可构造出相似形,通过相似形的性质,从而求出AB的长度。)7.如图:小明想测量一颗大树AB的高度,发现树的影子恰好落在土坡的坡面CD和地面CB上,测得CD=4m,BC=10m,CD与地面成30度角,且测得1米竹杆的影子长为2米,那么树的高度是多少?CABD8.为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了4米(BB‘),再把竹竿竖立在地面上,测得竹竿的影长(B‘C‘)为1.8米,求路灯离地面的高度.hSACBB'OC'A'9、如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明得身高为1.6m,求路灯杆AB的高度。DFBCEGAPDQBCA10.10.如图,小华在晚上由路灯如图,小华在晚上由路灯AA走向路灯走向路灯BB,当他走,当他走到点到点PP时,发现他身后影子的顶部刚好接触到路灯时,发现他身后影子的顶部刚好接触到路灯AA的底部,当他向前再步行的底部,当他向前再步行12m12m到达点到达点QQ时,发现他时,发现他身前影子的顶部刚好接触到路灯身前影子的顶部刚好接触到路灯BB的底部,已知小华的底部,已知小华的身高是的身高是1.60m1.60m,两个路灯的高度都是,两个路灯的高度都是9.6m9.6m,设,设AAP=x(m)P=x(m)。。(1)(1)求两路灯之间的距离;求两路灯之间的距离;(2)(2)当小华走到路灯当小华走到路灯BB时,他在路灯下的影子是多少?时,他在路灯下的影子是多少?1.通过本堂课的学习和探索,你学会了什么?2.谈一谈!你对这堂课的感受?1.在实际生活中,我们面对不能直接测量物体的高度和宽度时.可以把它们转化为数学问题,建立相似三角形模型,再利用对应边的比相等来达到求解的目的!2.能掌握并应用一些简单的相似三角形模型.