(5)(a+b)2=(a+b)(a+b)=a2+ab+ba+b2=a2+2ab+b2 (6)(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2 [生乙]我还发现(1)结果中的 2p=2·p·1,(2)结果中 4m=2·m·2,(3)、(4)与(1)、(2)比较只有一次项有符号之差,(5)、(6)更具有一般性,我认为它可以做公式用. [师]大家分析得很好.可以用语言叙述吗? [生]两数和(或差)的平方等于这两数的平方和再加(或减)它们的积的2 倍. [生]它是一个完全平方的形式,能不能叫完全平方公式呢? [师]很有道理.它和平方差公式一样,使整式运算简便易行.于是我们得到完全平方公式: 文字叙述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的 2 倍. 符号叙述:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 其实我们还可以从几何角度去解释完全平方差公式. (出示投影片)你能根据图(1)和图(2)中的面积说明完全平方公式吗? [生甲]先看图(1),可以看出大正方形的边长是 a+b. [生乙]还可以看出大正方形是由两个小正方形和两个矩形组成,所以大正方形的面积等于这四个图形的面积之和. [生丙]阴影部分的正方形边长是 a,所以它的面积是 a2;另一个小正方形的边长是 b,所以它的面积是 b2;另外两个矩形的长都是 a,宽都是 b,所以每个矩形的面积都是 ab;大正方形的边长是 a+b,其面积是(a+b)2.于是就可以得出:(a+b)2=a2+ab+b2.这正好符合完全平方公式. [生丁]那么,我们可以用完全相同的方法来研究图(2)的几何意义了. 如图(2)中,大正方形的边长是 a,它的面积是 a2;矩形 DCGE 与矩形 BCHF是全等图形,长都是 a,宽都是 b,所以它们的面积都是 a·b;正方形 HCGM 的边长是 b,其面积就是 b2;正方形 AFME 的边长是(a-b),所以它的面积是(a-- 1 -b)2.从图中可以看出正方形 AEMF 的面积等于正方形 ABCD 的面积减去两个矩形 DCGE 和 BCHF 的面积再加上正方形 HCGM 的面积.也就是:(a-b)2=a2-2ab+b2.这也正好符合完全平方公式. [师]数学源于生活,又服务于生活,于是我们可以进一步理解完全平方公式的结构特征.现在,大家可以轻松解开课时提出的老人用糖招待孩子的问题了. (a+b)2-(a2+b2) =a2+2ab+b2-a2-b2=2ab.于是得孩子们第三天得到的糖果总数比前两天他们得到的糖果总数多 2ab 块. 应用举例: 出示投影片: [例 1]应用完全平方公式计算: (1)(4m+n)2 ...