无理不等式的解法 一、无理不等式的基本类型:2( )01( )( )( )( )( )0 ( )0g xf xg xf xg xf xg x ( )或 2)()(0)(0)()()(2xgxfxfxgxgxf)(03( )( )( )( )( )( )g xf xg xf xg x 1152xx、解不等式-{ x|x < 2 } 2332xxx练习:解不等式二、例题选讲: 22323xxx 、解不等式1832xx 练习:解不等式 3534xx、解不等式 含参数的不等式解法 含有参数的不等式问题主要有三种主要类型 第一种类型:解含有参数的不等式;第二种类型:已知含有参数的不等式成立的条件,求参数的范围; 第三种类型:已知含有参数的不等式在某个条件下恒成立 , 能成立 , 恰成立或部分成立,求参数的范围 . 1axb、解关于x的不等式:一、一元一次不等式含参数问题2ax2>0,1x1 a 、已知不等式+当-时恒成立,求实数 的取值范围。 20223、解关于x的不等式x -(a+a )x+a二、一元二次不等式含参数问题121, ,xac221、已知ax +2x+c>0的解集为 x| - 3求 和并解不等式-cx +2x-a>0 2033xxmxm、解关于 的不等式:2220 1) (2) x(x-a+1)