电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

复数复习课教案VIP免费

复数复习课教案_第1页
1/9
复数复习课教案_第2页
2/9
复数复习课教案_第3页
3/9
课题:复数复习课 莱西一中南校 王连珍 教学目的: 1.理解复数的有关概念;掌握复数的代数表示及向量表示. 2.会运用复数的分类求出相关的复数(实数、纯虚数、虚数等)对应的实参数值. 3.能进行复数的代数形式的加法、减法、乘法、除法等运算. 4.掌握复数代数形式的运算法则及加减法运算的几何意义 教学重点:复数的有关概念、运算法则的梳理和具体的应用. 教学难点:复数的知识结构的梳理 授课类型:复习课 课时安排:1 课时 教 具:多媒体 教学过程: 一、知识要点: 1.虚数单位i: (1)它的平方等于-1,即21i   ; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立 2. i与-1 的关系: i就是-1 的一个平方根,即方程 x2= -1 的一个根,方程 x2= -1 的另一个根是-i 3. i的周期性: i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n=1 4.复数的定义: 形如( ,)abi a bR的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示. 5. 复数的代数形式: 复数通常用字母z表示,即 ( ,)zabi a bR,把复数表示成a+bi 的形式,叫做复数的代数形式 6. 复数与实数、虚数、纯虚数及0 的关系: 对于复数( ,)abi a bR,当且仅当b=0 时,复数a+bi(a、b∈R)是实数a;当b≠0 时,复数z=a+bi 叫做虚数;当a=0 且b≠0 时,z=bi 叫做纯虚数;当且仅当a=b=0 时,z就是实数0. 7.复数集与其它数集之间的关系: N Z Q R C. 8. 两个复数相等的定义: 如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等 即:如果 a,b,c,d∈R,那么 a+bi=c+di a=c,b=d 一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都是实数,就可以比较大小 只有当两个复数不全是实数时才不能比较大小 9. 复平面、实轴、虚轴: 点 Z 的横坐标是 a,纵坐标是 b,复数z=a+bi(a、b∈R)可用点 Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做 实轴,y 轴叫做虚轴实轴上的点都表示实数 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z=0+0i=0 表示是实数.故除了原点外,虚轴上的点都表示纯虚数 10.复数z1 与z2 的和的定义: z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i. 11. 复数z1 与z2 的差的定义: z1-z2=(a+bi)-(c+d...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

复数复习课教案

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部