摘要随着知识经济时代的到来,教育迎来了新的挑战,教育要把传授基础知识和逐步培养学生的创新意识和创造性思维结合起来,创造良好的教学环境,有意识的培养学生的创新意识,激发学生的创造动机,发展学生的创新能力。不等式是数学基础理论的重要部分。不等式是刻画现实世界和日常生活、生产和科学研究中的不等关系的数学模型,反映了事物在量上的区别,是研究数量关系和进一步学习数学的必备知识。本文着重介绍中学数学中了常用不等式的应用,分别从柯西不得事、拉格朗日中值定理、均值不等式以及Grownwall不等式入手,而后举出不同的实例进行运用证明。不等式的证明不仅锻炼同学们的思维,加深对知识的记忆和的理解,对学习知识点的进一步的掌握,并且为其后来灵活应用打下了良好的基础,并为现阶段建立与数学知识体系,通过各种渠道建立联系的思想埋下伏笔。关键词:不等关系,不等式证明,体系AbstractWith the advented era of knowledge economy , education and ushered in a new challenge , education should teach the basics and gradually develop students' awareness of innovation and creative which combined to create a good learning environment , students have a sense of awareness of innovation , stimulate students create motivation, develop students' ability to innovate. Inequality is an important part of the mathematical foundations theory . Inequality is portrayed in the real world and everyday life , , reflecting the difference in the amount of things , which is to study the relationship between the number and the necessary knowledge to the further learning mathematics . This article focuses on the application of commonly which used mathematical inequalities , respectively, from the Cauchy Inequality , Lagrange theorem , Grownwall Inequality, then cited various examples using proven . Proof of inequality not only exercise the students thinking, deepen their knowledge and understanding of memory , its flexible application later laid a good foundation and establish...