电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

无叶风扇的原理

无叶风扇的原理_第1页
1/13
无叶风扇的原理_第2页
2/13
无叶风扇的原理_第3页
3/13
看看专利文献内容,我们来大致了解一下无叶风扇的核心技术和原理:(关于该产品的更详细介绍,请前去Dyson官网~) 1、柯恩达(Coanda)表面和空气放大 这是无叶风扇的圆环的横截面,标示 14即为柯恩达表面,实际上就是能够产生柯恩达效应的物理表面。 所谓柯恩达效应(Coanda Effect),又被叫做康达效应,指的是流体(水流或气流)有离开本来的流动方向,改为随着凸出的物体表面流动的倾向。当流体与它流过的物体表面之间存在表面摩擦时,流体的流速会减慢。只要物体表面的曲率不是太大,依据流体力学中的伯努利定律,流速的减缓会导致流体被吸附在物体表面上流动。简单说,就是遇到曲面后,水流或气流会改变原来的运动方向,转而随着曲面流动。 维基百科中的例子能很好的说明这一现象:水向下流时,根据重力应当以图中黄色箭头的方向流下,但实际上,水流似乎摆脱了重力的束缚,继续沿着鸡蛋下表面流了一段时间。 无叶风扇的这一柯恩达表面,能让气流从排气口(12)出来后继续沿着曲面前进。这一方面改变了气流的方面,使它能吹向使用者;另一方面,从排气口吹出的气流能将其周边的气流卷吸走,把小气流变为大气流,起到了空气放大器的作用。 这就是无叶风扇被称作“空气倍加器”的原因所在。 2、雷诺数 空气被放大后,还需要解决一个技术问题,那就是从排气口(12)吹出气流的稳定性。如果主气流搅动很大,其卷吸的副气流也不会稳定,那么总气流也是不均匀的,这实际上就没能解决掉传统风扇风力不均的问题,产品的优势将大打折扣。 这里又涉及到雷诺数。所谓雷诺数,是惯性力和黏滞力的比值。雷诺数较小时,黏滞力对流场的影响大于惯性力,流场中流速的扰动会因黏滞力而衰减,流体流动稳定,为层流;反之,若雷诺数较大时,惯性力对流场的影响大于黏滞力,流体流动较不稳定,流速的微小变化容易发展、增强,形成紊乱、不规则的紊流流场。也就是说,雷诺数决定了流体的稳定情况。一般管道流雷诺数<2100为层流状态,大于 4000为湍流状态,2000~4000为过渡流状态。 雷诺数的计算与流体路径的横截面积有关,那么,只要在排气口(12)的出口处(14)设置适当的宽度,就能很好的保证稳定的气流出来。 因此戴森公司通过大量实验,最终在专利文献中反映记录的优选是1mm到5mm到范围内,并将最终产品的排气口出口宽度定为1.3mm。 (关于空气放大器的原理,请参看http://www.brandjet.com.cn/p_nex_amplifier.htm) 没有扇叶的风扇!Dyson ...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

无叶风扇的原理

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部