相似三角形题型归纳一、比例的性质:比例的性质示例剖析(1)基本性质:(2)反比性质:(3)更比性质:或或(4)合比性质:(5)分比性质:(6)合分比性质:(7)等比性质:已知,则当时,.二、成比例线段的概念:1.比例的项:在比例式(即)中,a,d称为比例外项,b,c称为比例内项.特别地,在比例式(即)中,b称为a,c的比例中项,满足.2.成比例线段:四条线段a,b,c,d中,如果a和b的比等于c和d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.3.黄金分割:如图,若线段AB上一点C,把线段AB分成两条线段AC和BC(),且使AC是AB和BC的比例中项(即),则称线段AB被点C黄金分割,点C叫线段AB的黄金分割点,其中,,AC与AB的比叫做黄金比.(注意:对于线段AB而言,黄金分割点有两个.)三、平行线分线段成比例定理1.平行线分线段成比例定理两条直线被三条平行线所截,所得的对应线段成比例,简称为平行线分线段成比例定理.如图:如果,则,,.【小结】若将所截出的小线段位置靠上的(如AB)称为上,位置靠下的称为下,两条线段合成的线段称为全,则可以形象的表示为,,.2.平行线分线段成比例定理的推论平行于三角形一边的直线,截其它两边(或两边的延长线),所得的对应线段成比例.如图:如果EF//BC,则,,.平行线分线段成比例定理的推论的逆定理若或或,则有EF//BC.【注意】对于一般形式的平行线分线段成比例的逆定理不成立,反例:任意四边形中一对对边的中点的连线与剩下两条边,这三条直线满足分线段成比例,但是它们并不平行.【小结】推论也简称“A”和“8”,逆定理的证明可以通过同一法,做交AC于点,再证明与F重合即可.四、相似三角形的定义、性质和判定1.相似图形①定义:对应角相等,对应边成比例的图形叫做相似图形.对应边的比例叫做相似比.相似图形是形状相同,大小不一定相同.相似图形间的互相变换称为相似变换.②性质:两个相似图形的对应角相等,对应边成比例.2.相似三角形的定义定义:对应角相等,对应边成比例的三角形叫做相似三角形.对应边的比例叫做相似比.全等三角形是特殊的相似三角形,全等三角形的相似比是1.如图,与相似,记作,符号读作“相似于”.注意:如果写成“”,则前后的字母一定对应;如果写成文字,则可以不对应.BA'AC'B'C3.相似三角形的性质①相似三角形的对应角相等.如图,,则有.②相似三角形的对应边成比例.如图,,则有(为相似比).③相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图,∽,和是中边上的中线、高线和角平分线,、和是中边上的中线、高线和角平分线,则有④相似三角形周长的比等于相似比.如图,∽,则有.⑤相似三角形面积的比等于相似比的平方.如图,∽,则有4.相似三角形的判定判定定理判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简称为两角对应相等,两个三角形相似.如图,如果,,则.判定定理2:如果两个三角形的三组对应边成比例,那么这两个三角形相似.简称为三边对应成比例,两个三角形相似.如图,如果,则.判定定理3:如果两个三角形的两组对应边成比例,并且对应的夹角相等,那么这两个三角形相似.简称为两边对应成比例且夹角相等,两个三角形相似.如图,如果,,则.五、“A”字和“8”字模型基本模型图形重要结论“A”字型“8”字型六、与内接矩形的有关的相似问题如图,已知四边形DEFG是的内接矩形,E、F在BC边上,D、G分别在AB、AC边上,则有:,.特别地,当时,有.NMGFEDCBA七、“A”字和“8”字模型的构造“A”字和“8”字模型的构造常常作平行线,常见的作平行线的方法:GFEDCBAGFEDCBAGFEDCBADEFCBA八、斜“8”模型如图为斜“8”字型基本图形.当时,则有.※.九、斜“A”模型如图为斜“A”字型基本图形.当时,则有.※.如图所示,当E点与C点重合时,为其常见的一个变形.当时,则有.※.如图所示,当E点在AC的延长线上时,为另一个常见的变形.当时,则有.※.十、射影定理在中,,于D.射影定理:(1);(2);(3).注意:(1)射影定理可以直接用,是用来证明的.(2)射影图形中,另外有下面的关系.①角的相等关系:,.②同一...