电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

abaqus铝合金A357切削加工有限元模拟

abaqus铝合金A357切削加工有限元模拟_第1页
1/41
abaqus铝合金A357切削加工有限元模拟_第2页
2/41
abaqus铝合金A357切削加工有限元模拟_第3页
3/41
铝合金A357 切削加工有限元模拟 1 铝合金A357 切削加工有限元模型 金属切削加工有限元模拟,是一个非常复杂的过程。这是因为实际生产中,影响加工精度、表面质量的因素很多,诸如:刀具的儿何参数、装夹条件、切削参数、切削路径等。这些因素使模拟过程中相关技术的处理具有较高的难度。本文建立的金属正交切削加工热力耦合有限元模型是基于以下的假设条件: (1)刀具是刚体且锋利,只考虑刀具的温度传导; (2)忽略加工过程中,由于温度变化引起的金相组织及其它的化学变化; (3)被加工对象的材料是各向同性的; (4)不考虑刀具、工件的振动; (5)由于刀具和工件的切削厚度方向上,切削工程中层厚不变,所以按平面应变来模拟; 1.1 材料模型 1.1.1A357 的 Johnson-Cook 本构模型 材料本构模型用来描述材料的力学性质,表征材料变形过程中的动态响应。在材料微观组织结构一定的情况下,流动应力受到变形程度、变形速度、及变形温度等因素的影响非常显著。这些因素的任何变化都会引起流动应力较大的变动。因此材料本构模型一般表示为流动应力与应变、应变率、温度等变形参数之间的数学函数关系。建立材料本构模型,无论是在制定合理的加工工艺方面,还是在金属塑性变形理论的研究方面都是极其重要的。在以塑性有限元为代表的现代塑性加工力学中,材料的流动应力作为输入时的重要参数,其精确度也是提高理论分析可靠度的关键。在本课题研究中,材料本构模型是切削加工数值模拟的必要前提,是预测零件铣削加工变形的重要基础,只有建立了大变形情况下随应变率和温度变化的应力应变关系,才能够准确描述材料在切削加工过程的塑性变形规律,继而才能在确定的边界条件和切削载荷下预测零件的变形大小及趋势。 在切削过程中,工件在高温、大应变下发生弹塑性变形,被切削材料在刀具的作用下变成切屑时的时间很短,而且被切削层中各处的应变、应变速率和温度并不均匀分布且梯度变化很大。因此能反映出应变、应变速率、温度对材料的流动应力影响的本构方程,在切削仿真中极其关键。当前常用的塑性材料本构模型主要有:Bodner-Paton、Follansbee-Kocks、Johnson-Cook、 Zerrilli-Armstrong 等模型,而只有 Johnson-Cook模型描述材料高应变速率下热粘塑性变形行为。Johnson—Cook 模型认为材料在高应变速率下表现为应变硬化、应变速率硬化和热软化效应,Johnson—Cook 模型如下所示: 01ln1mnrmrTTABcTT ...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

abaqus铝合金A357切削加工有限元模拟

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部