1 三角形内角和定理的证明说课稿 一、背景分析 1.学习任务分析 《三角形内角和定理的证明》是北师大版八年级下册第六章的第五节。本节课的主要内容是“三角形内角和定理”的证明及其简单应用。 三角形内角和定理是从“数量关系”来揭示三角形内角之间的关系的,这个定理是任意三角形的一个重要性质,它是学习以后知识的基础,在解决四边形和多边形的内角和时都将转化为三角形的内角和来解决。它是对图形进一步认识以及规范证明过程的重要内容之一,也是《证明(二)》《证明(三)》中用以研究角的关系的重要方法之一,因此,本节课起着承上启下的作用。而通过添加辅助线,把未知转化为已知,用代数方法解决几何问题,为以后的学习打下良好的基础。三角形内角和定理在理论和实践中有广泛的应用。 2.学生情况分析 三角形内角和定理的内容,学生已经很熟悉,但以前是通过实验得出的,学生可能会认为这是已经学过的知识,因此在学习过程中要向学生说明证明的必要性,在前几节的学习中,学生基本上已经掌握了简单证明的基本方法和步骤,本节课再一次来熟悉证明的过程。而本节课要证明这个结论需要添加适当的辅助线,因而本节课也要渗透这样的思想:添辅助线是解决数学问题(尤其是几何问题)的重要手段之一。 二、教学目标分析 对于三角形的内角和定理,我们以前已通过量、折、拼的方法进行了合情推理并得出了结论,本节课就一起对其进行数学证明。另外,通过前面几节课的学习, 学生基本上也掌握了证明的基本步骤和书写格式,学生可以自己书写证明过程。因此,我依据《数学课程标准》,以教材的特点和学生的认知水平为出发点,确定以下三个方面为本节课的教学目标。 ( 1)知识技能目标:掌握“三角形内角和定理”的证明及其简单应用,初步学会利用辅助线来证明命题。 ( 2)过程与方法目标:经历探索“三角形内角和定理”的证明过程,学会 2 与人合作,通过一题多解、一题多变等,初步体会思维的多向性。 ( 3)情感与态度目标:通过新颖、有趣的问题,来激发学生的求知欲,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。 三、课堂结构分析 (一)问题引入→(二)探究新知→(三)定理应用→(四)深化拓展→(五)小结巩固 本节课首先回顾探索三角形内角和定理的过程,然后让学生动手实践,并对照实践,探求证明方法。方法多种,因此采用小组讨论全班交流的方式,...