1电路的设计数字温度计电路原理系统方框图,如图1.1.图2.1电路原理方框图通过温度传感器LM35采集到温度信号,经过整形电路送到A/D转换器,然后通过译码器驱动数码管显示温度。ICL7107集A/D转换和译码器于一体,可以直接驱动数码管,省去了译码器的接线,使电路精简了不少,而且成本也不是很高。ICL7107只需要很少的外部元件就可以精确测量0到200mv电压,LM35本身就可以将温度线性转换成电压输出。综上所述,采用LM35采集信号,用ICL7107驱动数码管实现信号的显示。2电路原理及其电路组成数字温度计的设计原理图见附录1。它通过LM35对温度进行采集,通过温度与电压近乎线性关系,以此来确定输出电压和相应的电流,不同的温度对应不同的电压值,故我们可以通过电压电流值经过放大进入到A/D转换器和译码器,再由数码管表示出来。2.1传感电路LM35具有很高的工作精度和较宽的线性工作范围,该器件输出电压与摄氏温度线性成比例。因而,从使用角度来说,LM35与用开尔文标准的线性温度传感器相比更有优越之处,LM35无需外部校准或微调,可以提供±1/4℃的常用的室温精度。LM35具有以下特点:(1)工作电压:直流4~30V;(2)工作电流:小于133μA(3)输出电压:+6V~-1.0V(4)输出阻抗:1mA负载时0.1Ω;(5)精度:0.5℃精度(在+25℃时);(6)漏泄电流:小于60μA;(7)比例因数:线性+10.0mV/℃;(8)非线性值:±1/4℃;(9)校准方式:直接用摄氏温度校准;(10)封装:密封TO-46晶体管封装或塑料TO-92晶体管封装;(11)使用温度范围:-55~+150℃额定范围传感器电路采用核心部件是LM35AH,供电电压为直流15V时,工作电流为120mA,功耗极低,在全温度范围工作时,电流变化很小。电压输出采用差动信号方式,由2、3引脚直温度采集电压放大AD转换数码管驱动温度显示接输出,电阻R为18K普通电阻,D1、D2为1N4148。传感器电路原理如图2.1.采样值的准确量化是温控电路正常工作的关键,这里采用以下换算办法来进行量化。设经过信号调理后的电压为Ui,则已知-10V对应的温度为-55℃,10V对应的温度为125℃,易求得比例因数Kt=0.111V/℃。温度为0℃时,ΔT=55℃(即相对于-55℃的变化量)。图2.1传感器电路原理图Ui转换为数字量后,每个数字量对应电压值为4.883mV,(由12位AD,满量程20V可得),用Ks表示。可求得数字量变化与温度变化的对应关系:=(0.111V/℃)/(4.883mV/数字量)=22.73数字量/℃当t=0℃时,AD输出的数字量D0=0+55×22.73℃数字量/℃=1250=04E2H。温控电路由传感器电路、信号调理电路、A/D采样电路、单片机系统、输出控制电路、加温电路构成。电路基本工作原理:传感器电路将感受到的温度信号以电压形式输出到信号调理电路,信号经过调理后输入到A/D采样电路,由A/D转换器将数字量值送给单片机系统,单片机系统根据设计的温度要求判断是否需要接通加温电路。2.2温度信号采集电路Op-07芯片是一种低噪声,非斩波稳零的单运算放大器集成电路。由于OP07具有非常低的输入失调电压(对于OP-07A最大为25μV),所以OP-07在很多应用场合不需要额外的调零措施。OP07同时具有输入偏置电流低(OP-07A为±2nA)和开环增益高(对于OP-07A为300V/mV)的特点,这种低失调、高开环增益的特性使得OP-07特别适用于高增益的测量设备和放大传感器的微弱信号等方面。OP-07具有以下特点:超低偏移:150μV最大。(1)低输入偏置电流:1.8nA。(2)低失调电压漂移:0.5μV/℃。(3)超稳定,时间:2μV/month最大(4)高电源电压范围:±3V至±22V它的引脚图如图2.2所示。图2.2OP-07引脚图OP-07芯片引脚功能说明:1和8为偏置平衡(调零端),2为反向输入端,3为正向输入端,4接地,5空脚6为输出,7接电源+。OP-07高精度运算放大器具有极低的输入失调电压,极低的失调电压温漂,非常低的输入噪声电压幅度及长期稳定等特点。由LM35和OP-07组成的信号采集电路如图2.3所示:图2.3信号采集电路由输出短路法及输入求和方式可判断该电路是电压并流负反馈放大电路。因此可知If=-Vi/Rf,反馈系数F=If/Vo,所以F=-1/R3A=Vo/Ii,放大倍数AF=A/(1+AF)2.3A/D转换电路ICL7107是高性能、低功耗的三位...