第一部分:MATLAB 必备基础知识、控制系统模型与转换、线性控制系统的计算机辅助分析(4学时) 1. 2. 3. 答:(a) >> s=tf('s');G=(s^3+4*s+2)/(s^3*(s^2+2)*((s^2+1)^3+2*s+5)) Transfer function: s^3 + 4 s + 2 ------------------------------------------------------ s^11 + 5 s^9 + 9 s^7 + 2 s^6 + 12 s^5 + 4 s^4 + 12 s^3 (b) >> num=[1 0 0.568];den=[1 -1.2 1.19 -0.99];H=tf(num,den,'Ts',0.1) Transfer function: z^2 + 0.568 ----------------------------- z^3 - 1.2 z^2 + 1.19 z - 0.99 Sampling time: 0.1 4. 设 y(t)=x1; A=[0,1,0;0,0,1;-13,-4,-5];B=[0;0;2];C=[1,0,0];D=0;G=SS(A,B,C,D) a = x 1 x 2 x 3 x 1 0 1 0 x 2 0 0 1 x 3 -13 -4 -5 b = u 1 x 1 0 x 2 0 x 3 2 c = x 1 x 2 x 3 y 1 1 0 0 d = u 1 y 1 0 Continu ou s-time model. 传递函数模型:对式子两联进行拉氏变换, G(s)=2/(s^3+13*s^2+4*s+5) 对分子分母进行分解因式处理 5. 进行 Z 变换 6. s=tf('s');sy ms J Kps Ki;G=(s+1)/(J*s^2+2*s+5);Gc=(Kps+Ki)/s;H=1;GG=feedback(G*Gc,H) 7. (a) s=tf('s');G=(211.87*s+317.64)/((s+20)*(s+94.34)*(s+0.1684));Gc=(169.6*s+400)/s/(s+4);H=1/(0.01*s+1);GG=feedback(G*Gc,H) Transfer fu nction: 359.3 s^3 + 3.732e004 s^2 + 1.399e005 s + 127056 ---------------------------------------------------------------------------------- 0.01 s^6 + 2.185 s^5 + 142.1 s^4 + 2444 s^3 + 4.389e004 s^2 + 1.399e005 s + 127056 8. Ga=feedback(1/s^2,50);G1=feedback((1/(s+1))*(s/(s^2+2)),(4*s+2)/((s+1)^2));G2=feedback(Ga*G1,(s^2+2)/(s^3+14));G=3*G2 Transfer fu nction: 3 s^6 + 6 s^5 + 3 s^4 + 42 s^3 + 84 s^2 + 42 s ----------------------------------------------------------------------------------------------------- s^10 + 3 s^9 + 55 s^8 + 175 s^7 + 300 s^6 + 1323 s^5 + 2656 s^4 + 3715 s^3 + 7732 s^2 + 5602 s + 1400 9. >> s=tf('s');G=(s+1)^2*(s^2+2*s+400)/(s+5)^2/(s^2+3*s+100)/(s^2+3*s+2500) Transfer fu nction:...