1 8 2 第六章 数理统计的基础知识 从本章开始,我们将讨论另一主题:数理统计.数理统计是研究统计工作的一般原理和方法的数学学科,它以概率论为基础,研究如何合理地获取数据资料,并根据试验和观察得到的数据,对随机现象的客观规律性作出合理的推断. 本章介绍数理统计的基本概念,包括总体与样本、经验分布函数、统计量与抽样分布,并着重介绍三种常用的统计分布:2 分布、t分布和F分布. § 1 总体与样本 1.1 总体 在数理统计中,我们把所研究对象的全体称为总体, 总体中的每个元素称为个体.例如,研究某班学生的身高时,该班全体学生构成总体,其中每个学生都是一个个体;又如,考察某兵工厂生产炮弹的射程,该厂生产的所有炮弹构成总体,其中每个炮弹就是一个个体. 在具体问题的讨论中,我们关心的往往是研究对象的某一数量指标(例如学生的身高),它是一个随机变量,因此,总体又是指刻画研究对象某一数量指标的随机变量X .当研究的指标不止一个时,可将其分成几个总体来研究.今后,凡是提到总体就是指一个随机变量.随机变量的分布函数以及分布律(离散型)或概率密度(连续型)也称为总体的分布函数以及分布律或概率密度,并统称为总体的分布. 总体中所包含的个体总数叫做总体容量.如果总体的容量是有限的,则称为有限总体;否则称为无限总体.在实际应用中,有时需要把容量很大的有限总体当做是无限总体来研究. 1.2 随机样本 在数理统计中,总体X 的分布通常是未知的,或者在形式上是已知 1 8 3 的但含有未知参数.那么为了获得总体的分布信息,从理论上讲,需要对总体X 中的所有个体进行观察测试,但这往往是做不到的.例如,由于测试炮弹的射程试验具有破坏性,一旦我们获得每个炮弹的射程数据,这批炮弹也就全部报废了.所以,我们不可能对所有个体逐一加以观察测试,而是从总体X 中随机抽取若干个个体进行观察测试.从总体中抽取若干个个体的过程叫做抽样,抽取的若干个个体称为样本,样本中所含个体的数量称为样本容量. 抽取样本是为了研究总体的性质,为了保证所抽取的样本在总体中具有代表性,抽样方法必须满足以下两个条件: ( 1)随机性 每次抽取时,总体中每个个体被抽到的可能性均等. ( 2) 独立性 每次抽取是相互独立的,即每次抽取的结果既不影响其它各次抽取的结果,也不受其它各次抽取结果的影响. 这种随机的、独立的抽样方法称为简单随机抽样,由此得到的样本称为 简单随机样本. 对于有限总体而言...