相交线与平行线复习教案 教学目标 1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化, 梳理本章的知识结构. 2.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形. 3.使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质,理解平移的性质,能利用平移设计图案. 重点、难点 重点:复习正面内两条直线的相交和平行的位置关系,以及相交平行的综合应用. 难点:垂直、平行的性质和判定的综合应用. 教学过程 一、复习提问 本章相交线、平行线中学习了哪些主要问题?教师根据学生的回答,逐步形成本章的知识结构图,使所学知识系统化. 二、回顾与思考 按知识网展开复习. 1.对顶角、邻补角。 (1)教师提出问题,由幻灯片出示. ①两条直线相交、构成哪两种特殊位置关系的角?指出图(1) 中具有这两种位置的角. (1) (2) (3) ②如图(2)中,若∠AOD=90°,那么直线 AB,CD 的位置关系如何? ③如图(3)中,∠1 与∠2,∠2 与∠3,∠3 与∠4 是怎么位置关系的角? (2)学生回答. (3)教师强调:对顶角、邻补角是由两条相交面而成的具有特殊位置关系的角,要抓住对顶角的特征,有公共顶角,角的两边互为反向延长线;邻补角的特征:有公共顶有一条公共边,另一边互为反向延长线。 (4)对顶角有什么性质?(对顶角相等)如果两个对顶角互补或邻补角相等, 你得到什么结论? 让学生明确,对顶角总是相等,邻补角一定互补, 但加上其他条件如对顶角或邻补角相等后,那么问题中每个角的度数就随之确定,为 90°角, 这时两条直线互相垂直. 2.垂线及其性质. (1)复习时教师应强调垂线的定义即可以作垂线的制定方法用,也可以作垂线性质用. 作判定用时写成:如图(2),因为∠AOD=90°,所以 AB⊥ CD, 这是一个角的"数"到两直线垂直的"形"的判断。 作为性质用时写成:如图(2),因为 AB⊥ CD,所以∠AOD=90°。这是由"形"到"数"的说理。 (2)如图(4),直线 AB、CD、EF 相交于点 O,CD⊥ EF,∠1=35°,求∠2 的度数. (4) (5) (6) 鼓励学生用不同方法求解. (3)垂线性质 1 和性质 2. 让学生叙述垂线的性质,懂得分清这两个命题的题设和结论,垂线性质一说得过一点已知直线的垂线存在并且唯一的. 学生思考: ①请回忆一下后体育课测跳远成绩时,教师是怎样测量的? 如图(5),AB⊥ L,BC⊥ L,B 为重足,那么 A、B、C 三点在同一②条直线上吗?为什么? ③点到直线...