怎样描述圆周运动-例题思考1.线速度就是曲线运动中的瞬时速度,线速度的方向沿圆周的切线方向.线速度的定义式是 v=s/t.角速度是物体做圆周运动时,连接它与圆心的半径转过的角度跟所用时间的比值,定义式是 ω=.物体做圆周运动一周所用时间叫做圆周运动的周期,周期的倒数就是频率(f),是单位时间内做圆周运动的圈数,又叫转速(n).转速的单位除用转每秒(r/s)外,还有转每分(r/min)和转每小时(r/h)等.线速度和角速度的关系:v=rω,和周期、转速的关系:v=,ω=,n==.【例 1】 地球半径为 6400 km,地球赤道上的物体随地球自转的角速度是多少?线速度是多少?思路:地球自转时,地球上所有物体都在做圆周运动,它们的角速度都相同,线速度与地理纬度有关,纬度越低圆半径越大.赤道的圆半径最大,物体的线速度也最大.解析:地球自转一周,转过的弧度为 2π,所用时间为 24 h,由角速度公式可得ω=φ/t=2π/24×3600 rad/s≈7.27×10-5 rad/s由线速度公式可得v=2πr/t=2π×6400×103/(24×3600) m/s≈465 m/s.【例 2】 电唱机转盘每分钟转 45 圈,在唱片离转轴 0.1 m 处有一个小螺帽,求小螺帽做匀速圆周运动的周期、角速度、线速度.思路:周期、角速度、线速度和转速都反映匀速圆周运动的快慢,它们有一定的关系,知道其中一个量,就可求出其他量.题中给出每分钟转数,先要将它化为每秒转数.解析:由周期和转速的关系可求周期T=1/n=60/45 s≈1.33 s .由周期和角速度的关系可求角速度ω=2π/T=3π/2 rad/s≈4.71 rad/s.由线速度和角速度的关系可求线速度v=ωr=0.1×4.71 m/s=0.471 m/s.2.在分析传动装置的各个物理量的关系时,要抓住不等量和相等量之间的关系.在同一转动物体上,即物体上各点具有同一个转动轴时,各点具有相同的角速度,不同物体上的各点通过齿轮、链条和皮带相连时,线速度相同.【例 3】 如右图所示皮带传动装置,主动轴 O1上有两个半径分别为 R 和 r 的轮,O2上的轮半径为 r′,已知 R=2r,R=,设皮带不打滑,A、B、C 分别为半径 r、R、 轮缘上的点,问:ωA∶ωB=? ωB∶ωC=? vA∶vB=? vA∶vC=?思路:A、B 两点都绕相同的转动轴转动,属于共轴的关系,具有相同的角速度,B、C 两点用皮带相连,具有相同的线速度,然后利用它们之间关系公式,就可以求得和其他点之间的线速度和角速度的关系.解析:A、B 同轴,故 ωA∶ωB=1∶1因 B 与 C 用皮带传动,所以 vB∶v...