2.1.1 指数与指数幂的运算(二)(一)教学目标1.知识与技能(1)理解分数指数幂的概念;(2)掌握分数指数幂和根式之间的互化;(3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力.2.过程与方法通过与初中所学的知识进行类比,得出分数指数幂的概念,和指数幂的性质.3.情感、态度与价值观 (1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.(二)教学重点、难点1.教学重点:(1)分数指数幂的理解; (2)掌握并运用分数指数幂的运算性质;2.教学难点:分数指数幂概念的理解(三)教学方法发现教学法1.经历由利用根式的运算性质对根式的化简,注意发现并归纳其变形特点,进而由特殊情形归纳出一般规律.2.在学生掌握了有理指数幂的运算性质后,进一步推广到实数范围内.由此让学生体会发现规律,并由特殊推广到一般的研究方法.(四)教学过程教学环节教学内容师生互动设计意图提出问题回顾初中时的整数指数幂及运算性质.0,1(0)naa a aa aa ,00 无意义老师提问,学生回答.学习新知前的简 单 复习,不仅用心 爱心 专心1(0)nnaaa;()mnm nmnmnaaaaa(),()nmmnnnnaaaba b什么叫实数?有理数,无理数统称实数.能唤起学生 的 记忆,而且为学习新课作好了知识上的准备.复习引入观察以下式子,并总结出规律:a >0① 105102 5255()aaaa ② 884242()aaaa③ 12123 43444()aaaa ④5105102 525()aaaa小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式 .如:2323(0)aaa12(0)bbb5544(0)ccc即:*(0,,1)mnmnaaanNn 老师引导学生“当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式)”联想“根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.”.从而推广到正数的分数指数幂的意义.数学中引进一个新的概念或法则时,总希望它与已有的概念或法则是相容的.形成为此,我们规定正数的分数指数幂的意义为:学生计算、构造、猜想,允许交流讨论,汇报结论.教师巡视指导.让 学生经历从用心 爱心 专心概念*(0,,)mnmn...