电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

2011年高考数学二轮复习 专题7 思想方法专题——第4讲 转化与化归思想精品学案

2011年高考数学二轮复习 专题7 思想方法专题——第4讲 转化与化归思想精品学案_第1页
1/16
2011年高考数学二轮复习 专题7 思想方法专题——第4讲 转化与化归思想精品学案_第2页
2/16
2011年高考数学二轮复习 专题7 思想方法专题——第4讲 转化与化归思想精品学案_第3页
3/16
专题七:思想方法专题第四讲 转化与化归思想【思想方法诠释】数学问题的解答离不开转化与化归,它既是一种数学思想,又是一种数学能力,是高考重点考查的最重要的思想方法.在高中数学的学习中,它无个不在,比如:处理立体几何问题时,将空间问题转化到一个平面上解决;在解析几何中,通过建立坐标系将几何问题化归为代数问题;复数问题化归为实数问题等.1.转化与化归的原则(1)目标简单化原则:将复杂的问题向简单的问题转化.(2)和谐统一性原则:即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当.(3)具体化原则:即化归言论自由应由抽象到具体.(4)低层次原则:即将高维空间问题化归成低维空间问题.(5)正难则反原则:即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求 ,使问题获解.2.转化与化归常用到的方法(1)直接转化法:把问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(5)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径.(6)类比法:运用类比推理,猜测问题的结论,易于确定转化途径.(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(8)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的.(9)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,比如在证明不等式时:原命题往往难以得证,这时常把结论加强,使之成为原命题的充分条件,从而易证.(10)补集法:如果下面解决原问题有困难,可把原问题结果看作集合 A,而包含该问题的整体问题的结果类比为全集 U,通过解决全集 U 及补集使原问题得以解决.【核心要点突破】要点考向 1:函数、方程、不等式之间的转化例 1:已知函数 f(x)=x2+2x+alnx.或函数 f(x)在区间(0,1]上为单调增函数,求实数 a 的取值范围.思路精析:单调增函数→不等式恒成立→分离参数→求...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

2011年高考数学二轮复习 专题7 思想方法专题——第4讲 转化与化归思想精品学案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部