33 同角三角函数的基本关系式教材分析这节课主要是根据三角函数的定义,导出同角三角函数的两个基本关系式 sin2a+cos2a=1与,并初步进行这些公式的两类基本应用.教学重点是公式 sin2a+cos2a=1与的推导及以下两类基本应用:(1)已知某角的正弦、余弦、正切中的一个,求其余两个三角函数.(2)化简三角函数式及证明简单的三角恒等式.其中,已知某角的一个三角函数值,求它的其余各三角函数值时,正负号的选择是本节的一个难点,正确运用平方根及象限角的概念是突破这一难点的关键;证明恒等式是这节课的另一个难点.课堂上教师应放手让学生独立解决问题,优化自己的解题过程.教学目标1. 让学生经历同角三角函数的基本关系的探索、发现过程,培养学生的动手实践、探索、研究能力.2. 理解和掌握同角三角函数的基本关系式,并能初步运用它们解决一些三角函数的求值、化简、证明等问题,培养学生的运算能力,逻辑推理能力.3. 通过同角三角函数基本关系的学习,揭示事物之间的普遍联系规律,培养学生的辩证唯物主义世界观.任务分析这节课的主要任务是引导学生根据三角函数的定义探索出同角三角函数的两个基本关系式:sin2a+cos2a=1 及,并进行初步的应用.由于该节内容比较容易,所以,课堂上无论是关系式的探索还是例、习题的解决都可以放手让学生独立完成,即由学生自己把要学的知识探索出来,并用以解决新的问题.必要时,教师可以在以下几点上加以强调:(1)“同角”二字的含义.(2)关系式的适用条件.(3)化简题最后结果的形式.(4)怎样优化解题过程.1教学设计一、问题情境教师出示问题:上一节内容,我们学习了任意角 α 的六个三角函数及正弦线、余弦线和正切线,你知道它们之间有什么联系吗?你能得出它们之间的直接关系吗?二、建立模型1. 引导学生写出任意角 α 的六个三角函数,并探索它们之间的关系在角 α 的终边上任取一点 P(x,y),它与原点的距离是 r(r>0),则角 α 的六个三角函数值是2. 推导同角三角函数关系式引导学生通过观察、分析和讨论,消元(消去 x,y,r),从而获取下述基本关系.(1)平方关系:sin2a+cos2a=1.(2)商数关系:t:说明:①当放手让学生推导同角三角函数的基本关系时,部分学生可能会利用三角函数线,借助勾股定理及相似三角形的知识来得出结论.对于这种推导方法,教师也应给以充分肯定,并进一步引导学生得出|sinα|+|cosα|≥1.② 除以上两个关系...