3.3.1 双曲线的标准方程【教学目标】:1.知识与技能掌握双曲线的定义,标准方程,并会根据已知条件求双曲线的标准方程.2.过程与方法教材通过具体实例类比椭圆的定义,引出双曲线的定义,通过类比推导出双曲线的标准方程.3.情感、态度与价值观通过本节课的学习,可以培养我们类比推理的能力,激发我们的学习兴趣,培养学生思考问题、分析问题、解决问题的能力.【教学重点】: 双曲线的定义、标准方程及其简单应用【教学难点】: 双曲线标准方程的推导【授课类型】:新授课【课时安排】:1 课时 【教 具】:多媒体、实物投影仪【教学过程】:一.情境设置(1)复习提问:(由一位学生口答,教师利用多媒体投影) 问题 1:椭圆的定义是什么?问题 2:椭圆的标准方程是怎样的?问题 3:如果把上述椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?它的方程又是怎样的呢?(2)探究新知:(1)演示:引导学生用《几何画板》作出双曲线的图象,并利用课件进行双曲线的模拟实验,思考以下问题。(2)设问:①|MF1|与|MF2|哪个大?② 点 M 到 F1与 F2两点的距离的差怎样表示?③||MF1|-|MF2||与|F1F2|有何关系?(请学生回答:应小于|F1F2| 且大于零,当常数等于|F1F2| 时,轨迹是以 F1、F2为端点的两条射线;当常数大于|F1F2| 时,无轨迹)二.理论建构1.双曲线的定义1引导学生概括出双曲线的定义:定义:平面内与两个定点 F1、F2的距离的差的绝对值等于常数(小于<|F1F2|)的点轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。(投影)概念中几个关键词:“平面内”、“距离的差的绝对值”、“常数小于” 奎屯王新敞新疆 2.双曲线的标准方程现在我们可以用类似求椭圆标准方程的方法来求双曲线的标准方程,请学生思考、回忆椭圆标准方程的推导方法,随即引导学生给出双曲线标准方程的推导(教师使用多媒体演示)(1)建系取过焦点 F1、F2的直线为 x 轴,线段 F1F2的垂直平分线为 y 轴建立平面直角坐标系。(2) 设点设 M(x,y)为双曲线上任意一点,双曲线的焦距为 2c(c>0),则 F1(-c,0)、F2(c,0),又设点 M 与 F1、F2的距离的差的绝对值等于常数 2a(2a<2c).(3)列式由定义可知,双曲线上点的集合是 P={M|||MF1|-|MF2||=2a}. 即:(4)化简方程由一位学生板演,教师巡视。化简,整理得:移项两边平方得两边再平方后整理得由双曲线定义知这个方程叫做双曲线的标准方程,它所表示...