§9.5 椭 圆2014 高考会这样考 1.考查椭圆的定义及应用;2.考查椭圆的方程、几何性质;3.考查直线与椭圆的位置关系.复习备考要这样做 1.熟练掌握椭圆的定义、几何性质;2.会利用定义法、待定系数法求椭圆方程;3.重视数学思想方法的应用,体会解析几何的本质——用代数方法求解几何问题.1. 椭圆的概念在平面内与两定点 F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合 P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中 a>0,c>0,且 a,c 为常数:(1)若 a > c ,则集合 P 为椭圆;(2)若 a = c ,则集合 P 为线段;(3)若 a < c ,则集合 P 为空集.2. 椭圆的标准方程和几何性质标准方程+=1 (a>b>0)+=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴 对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴 A1A2的长为 2a;短轴 B1B2的长为 2b焦距|F1F2|=2c离心率e=∈(0,1)a,b,c 的关系c2=a2-b2[难点正本 疑点清源]1. 椭圆焦点位置与 x2,y2系数间的关系:给出椭圆方程+=1 时,椭圆的焦点在 x 轴上⇔m>n>0,椭圆的焦点在 y 轴上⇔02,即 k<1,又 k>0,∴0