电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【高考A计划】2014高考数学第一轮复习 第11课时 函数的单调性学案 新人教A版

【高考A计划】2014高考数学第一轮复习 第11课时 函数的单调性学案 新人教A版_第1页
1/3
【高考A计划】2014高考数学第一轮复习 第11课时 函数的单调性学案 新人教A版_第2页
2/3
【高考A计划】2014高考数学第一轮复习 第11课时 函数的单调性学案 新人教A版_第3页
3/3
【高考 A 计划】2014 高考数学第一轮复习 第 11 课时 函数的单调性学案 新人教 A 版一.课题:函数的单调性 二.教学目标:理解函数单调性的定义,会用函数单调性解决一些问题.三.教学重点:函数单调性的判断和函数单调性的应用.四.教学过程:(一)主要知识:1.函数单调性的定义; 2.判断函数的单调性的方法;求函数的单调区间;3.复合函数单调性的判断.(二)主要方法:1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集; 2.判断函数的单调性的方法有:(1)用定义;(2)用已知函数的单调性;(3)利用函数的导数.3.注意函数的单调性的应用;4.注意分类讨论与数形结合的应用. (三)例题分析:例 1.(1)求函数的单调区间;(2)已知若试确定的单调区间和单调性.解:(1)单调增区间为:单调减区间为,(2),, 令 ,得或,令 ,或∴单调增区间为;单调减区间为.例 2.设,是上的偶函数.(1)求的值;(2)证明在上为增函数.解:(1)依题意,对一切,有,即∴对一切成立,则,∴,∵,∴.1(2)设,则,由,得,,∴,即,∴在上为增函数.例 3.(1)(《高考计划》考点 11“智能训练第 9 题”)若为奇函数,且在上是减函数,又,则的解集为.例 4.(《高考计划》考点 10 智能训练 14)已知函数的定义域是的一切实数,对定义域内的任意都有,且当时,(1)求证:是偶函数;(2)在上是增函数;(3)解不等式.解:(1)令,得,∴,令,得∴,∴,∴是偶函数.(2)设,则∵,∴,∴,即,∴∴在上是增函数.(3),∴,∵是偶函数∴不等式可化为, 又∵函数在上是增函数,∴,解得:,2即不等式的解集为.例 5.函数在上是增函数,求的取值范围.分析:由函数在上是增函数可以得到两个信息:①对任意的总有;②当时,恒成立.解:∵函数在上是增函数,∴对任意的有,即,得,即,∵,∴ ,∵,∴要使恒成立,只要;又∵函数在上是增函数,∴,即,综上的取值范围为.另解:(用导数求解)令,函数在上是增函数,∴在上是增函数,,∴,且在上恒成立,得.(四)巩固练习:1.《高考计划》考点 11,智能训练 10;2.已知是上的奇函数,且在上是增函数,则在上的单调性为 .五.课后作业:《高考计划》考点 1,智能训练 4,5, 7,8,12,13,15.3

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【高考A计划】2014高考数学第一轮复习 第11课时 函数的单调性学案 新人教A版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部