电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

云南省2010届高三数学二轮复习专题教案(三十八)

云南省2010届高三数学二轮复习专题教案(三十八)_第1页
1/6
云南省2010届高三数学二轮复习专题教案(三十八)_第2页
2/6
云南省2010届高三数学二轮复习专题教案(三十八)_第3页
3/6
云 南 省 2010 届 高 三 二 轮 复 习 数 学 专 题 教 案( 三 十 八 )题目 高中数学复习专题讲座数形结合思想高考要求 数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决 运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征 重难点归纳 应用数形结合的思想,应注意以下数与形的转化 (1 )集合的运算及韦恩图(2 )函数及其图像(3 )数列通项及求和公式的函数特征及函数图像(4 )方程(多指二元方程)及方程的曲线以形助数常用的有 借助数轴;借助函数图像;借助单位圆;借助数式的结构特征;借助于解析几何方法 以数助形常用的有 借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合 典型题例示范讲解 例1 设A={x|–2≤x≤a},B={y|y=2x+3,且x∈A} ,C={z|z=x2 ,且x∈A },若C B ,求实数a 的取值范围 命题意图 本题借助数形结合,考查有关集合关系运算的题目 知识依托 解决本题的关键是依靠一元二次函数在区间上的值域求法确定集合C 进而将C B 用不等式这一数学语言加以转化 错解分析 考生在确定z=x2 ,x∈ [–2,a]的值域是易出错,不能分类而论 巧妙观察图像将是上策 不能漏掉a <–2 这一种特殊情形 技巧与方法 解决集合问题首先看清元素究竟是什么,然后再把集合语言“翻译”为一般的数学语言,进而分析条件与结论特点,再将其转化为图形语言,利用数形结合的思想来解决 解 y=2x+3在[–2, a ]上是增函数∴–1≤y≤2a+3,即B={y|–1≤y≤2a+3}作出z=x2 的图像,该函数定义域右端点x=a 有三种不同的位置情况如下 ①当–2≤a≤0 时,a2≤z≤4 即C={z|a2≤z≤4}要使C B, 必须且只须2a+3≥4 得a≥ 21 与–2≤a<0 矛盾 ②当0≤a≤2 时,0≤z≤4 即C={z|0≤z≤4} ,要使CB ,由图可知 用心 爱心 专心a24a-2oyx必须且只需20432aa解得 21≤a≤2③ 当 a> 2时 , 0≤z≤a2, 即 C={z|0≤z≤a2},要使C B 必须且只需2322aaa解得2 <a≤3④当a...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

云南省2010届高三数学二轮复习专题教案(三十八)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部