1.1.1 正弦定理一、内容及其解析内容:容是处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系有密切的联系,与已知三角形的边和角相等判定三角形全等的知识也有着密切的联系.教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.二、目标及其解析目标:1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.解析:目标 1 就是让学生从已有的几何知识出发,共同探究在任意三角形中边与其对角的关系;引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理;目标 2 就是在教学中归纳出这两种基本问题,在练习中让学生总结方法和规律。三、问题诊断分析1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.培养学生探索数学规律的思维能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.四、教学过程问题与题例问题 1 如右图,固定△ABC 的边 CB 及∠B,使边 AC 绕着顶点 C 转动.思考:∠C 的大小与它的对边 AB 的长度之间有怎样的数量关系? 显然,边 AB 的长度随着其对角∠C 的大小的增大而增大.问题 2 能否用一个等式把这种关系精确地表示出来?在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系.如右图,在 Rt△ABC 中,设 BC =A,AC =B,AB =C,根据锐角三角函数中正弦函数的定义,有=sinA, =sinB,又 sinC=1=,则.从而在直角三角形 ABC 中,.问题 3 那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如右图,当△ABC 是锐角三角形时,设边 AB 上的高是 CD,根据任意...